This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers at Monash University in Australia have conducted a lifecycle analysis and net energy analysis (LCA/NEA) of a hypothetical large-scale solar-electrolysis plant for the production of green hydrogen. The open-access paper on the study is published in the RSC journal Energy & Environmental Science. Palmer et al.
The technology group Wärtsilä is developing the combustion process in its gas engines to enable them to burn 100% hydrogen fuel. Wärtsilä has researched hydrogen as a fuel for 20 years, and has tested its engines with blends of up to 60% hydrogen and 40% natural gas.
The results show there is no realistic pathway to full decarbonization of internal combustion engine vehicles, and that only battery and hydrogen fuel-cell EVs have potential to be very low-GHG passenger vehicle pathways. This study uses recent data on industrial-scale battery production and considers regional battery supply chains.
Researchers at The Ohio State University have used a chemical looping process to produce hydrogen from hydrogen sulfide gas—commonly called “sewer gas”. Compared with the undoped sulfur carrier, Mo dopant facilitates the surface hydrogen diffusion, thus promoting the overall H 2 S conversion.
The project is supported by DOE’s Hydrogen and Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy. The project partners will generate zero-carbon hydrogen onsite via electrolysis with solar and wind power and reformation of renewable natural gas from a Texas landfill.
Southern California Gas Co. SoCalGas) and H2U Technologies are testing a new electrolyzer, called the Gramme 50, for the production of green hydrogen. The green hydrogen produced by this new technology can be used for clean transportation or industrial applications or blended with natural gas.
Japan’s New Energy and Industrial Technology Development Organization (NEDO) has appointed Sumitomo, Chiyoda, Toyota Motor, Japan Research Institute and Sumitomo Mitsui Banking to conduct a feasibility study on the receiving and distribution business of hydrogen in Chubu Region. Iwatani Corporation, Chubu Electric Power Co.,
With clean hydrogen gaining recognition worldwide as a carbon-free fuel capable of making a significant contribution to addressing climate change, Southern California Gas Co. SoCalGas) will field test a new technology that can simultaneously separate and compress hydrogen from a blend of hydrogen and natural gas.
Airbus is developing a hydrogen-powered fuel cell engine. The A380 MSN1 flight test aircraft for new hydrogen technologies is currently being modified to carry liquid hydrogen tanks and their associated distribution systems. There are two ways hydrogen can be used as a power source for aircraft propulsion. Earlier post.).
million in federal funding for cost-shared research and development projects under the funding opportunity announcement (FOA) FE-FOA 0002397 , University Turbines Systems Research (UTSR) — Focus on Hydrogen Fuels. The UTSR Program conducts research to increase the efficiency and performance of gas turbines while lowering emissions.
Australia-based Woodside has signed an agreement with Japanese companies JERA Inc, Marubeni Corporation and IHI Corporation to undertake a joint study examining the large-scale export of hydrogen as ammonia for use decarbonizing coal-fired power generation in Japan. Green hydrogen is produced from renewable energy using electrolysis.
A hydrogen exchange, similar to electricity and gas exchanges, could act as a catalyst for a market for climate-neutral hydrogen, according to an exploratory study, “A Hydrogen Exchange for the Climate”, presented to Eric Wiebes, the Netherlands Minister of Economic Affairs and Climate Policy.
The French approach follows on from the “H2 Mobility” initiatives in Germany ( earlier post ) and Great Britain ( earlier post ), among others, and is co-funded by the stakeholders themselves and the European Union within the HIT (Hydrogen for Transport Infrastructure) framework project. The results will be published in late 2013.
A team from Hamad Bin Khalifa University in Qatar has comprehensively reviewed various ammonia decomposition techniques to produce clean hydrogen by recovering the boil-off ammonia while integrating solar energy infrastructures onboard a ship for electricity and heat requirements. The review paper is published in the journal Fuel.
However, they also noted, high PTW efficiencies and the moderate fuel economies of current compressed natural gas vehicles (CNGVs) make them a viable option as well. If CNG were to be eventually used in hybrids, the advantage of the electric generation/EV option shrinks. Their open access paper is published in the journal Energy.
Pacific Gas and Electric Company (PG&E) is launching the US’ most comprehensive end-to-end hydrogenstudy and demonstration facility, which will examine the future potential of the zero-carbon fuel hydrogen as a renewable energy source for not only PG&E customers but the entire global natural gas industry.
Researchers at the University of Ontario Institute of Technology are developing a new method to dissociate water vapor into hydrogengas by microwave-generated plasma (plasmolysis). A) An experimental setup for full microwave hydrogen production and (b) Schematic of the plasma reactor placed inside the microwave. Chehade et al.
Italy-based Snam, a global energy infrastructure company, and RINA, a global testing, inspection, certification and engineering consultancy services firm, have signed a Memorandum of Understanding to collaborate in the hydrogen sector, in order to realize the significant potential of hydrogen as a fundamental energy carrier.
A study by two researchers at Sandia National Laboratories has concluded that building and operating a high-speed passenger ferry solely powered by hydrogen fuel cells within the context of the San Francisco Bay is technically feasible, with full regulatory acceptance as well as the requisite associated hydrogen fueling infrastructure.
Ovako, a European manufacturer of steel and one of the largest steel recyclers in the Nordic countries, is inaugurating the hydrogen plant at its Hofors mill. Ovako’s hydrogen plant is the world’s first facility for producing fossil-free hydrogen to heat steel before rolling. A 2020 study by Zanoni et al. Earlier post.)
The European Commission’s Joint Research Center (JRC) published a policy brief showing that delivery of large amounts of renewable hydrogen over long distances could be cost-effective. This finding is important because access to sufficient amounts of renewable hydrogen at low cost is essential for achieving a climate neutral Europe by 2050.
million) to five demonstration phase projects for low-carbon hydrogen production. The hydrogen projects receiving funding are: Dolphyn. The project concerns the production of hydrogen at scale from offshore floating wind in deep water locations. HyNet – low carbon hydrogen plant. Acorn Hydrogen Project.
bp signed a memorandum of understanding (MoU) with the Government of Egypt under which bp will explore the potential for establishing a new green hydrogen production facility in the country. It is intended that high-potential locations across Egypt will be considered as part of the feasibility study, targeting best-in-class resources.
The event is the most recent example of a concerted effort to educate stakeholders and encourage the implementation of the SAE hydrogen fueling standards. Validated in the lab and proven in the field over the last decade, these standards provide the basis for hydrogen fueling for the first generation of infrastructure worldwide.
million for the next phase of Gigastack, a new renewable hydrogen project, as part of the Department for Business, Energy and Industrial Strategy (BEIS) Hydrogen Supply Competition. Producing hydrogen has traditionally been associated with high carbon emissions, but by using renewable electricity—e.g.,
Siemens Gamesa and Siemens Energy are joining forces to develop an innovative solution that fully integrates an electrolyzer into an offshore wind turbine as a single synchronized system to produce green hydrogen directly. The solution will lower the cost of hydrogen by being able to run off grid, opening up more and better wind sites.
The Port of Los Angeles and its partners rolled out five new hydrogen-powered fuel cell electric vehicles (FCEV) and introduced two hydrogen fueling stations. Gas and technology leader Air Liquide is also participating as a fuel supplier. Under the $82.5-million Under the $82.5-million
Equinor and RWE have joined the NortH2 project, which aims to produce green hydrogen using renewable electricity from offshore wind off the coast of Netherlands of about 4 gigawatts by 2030, and 10+ gigawatts by 2040, kickstarting the hydrogen economy in Northwest Europe. This equates to 0.4
A team at Argonne National Laboratory’s Systems Assessment Center has evaluated the well-to-wheel (WTW) greenhouse gas (GHG) emissions of Fischer–Tropsch (FT) fuels produced via various electrolytic H 2 pathways and CO 2 sources; using various process designs (i.e., Zang et al. —Zang et al. 0c05893.
The independent study brought together experts from across the UK to assess the design challenges, manufacturing demands, operational requirements and market opportunity of potential zero-carbon emission aircraft concepts. The regional concept, powered by fuel cells, carries 75 passengers up to 800 nmi at a speed of 325 knots.
Australia-based Global Energy Ventures (GEV) and Pacific Hydro Australia Developments Pty Ltd (Pacific Hydro) have executed a Memorandum of Understanding (MOU) to explore opportunities regarding the production, storage, loading, ground and marine transportation of green hydrogen produced by Pacific Hydro’s Ord Hydrogen Project.
One of the challenges of constructing a global hydrogen economy is hydrogen transportation by sea. An open-access paper on the work is published in the International Journal of Hydrogen Energy. Hydrogen can significantly reduce geopolitical risks if the diversity of future hydrogen energy suppliers is increased.
Audi A3 TCNG for e-gas project. Starting in 2013, Audi will begin series production of TCNG models whose engines—derived from TFSI units—will be powered by e-gas: synthetic methane produced via the methanation of hydrogen produced by electrolysis using renewable electricity. Click to enlarge.
The California Energy Commission has awarded GTI and Sierra Northern Railway nearly $4,000,000 to fund the design, integration, and demonstration of a hydrogen fuel cell switching locomotive to support the Hydrogen Fuel Cell Demonstrations in Rail and Marine Applications at Ports (H2RAM) initiative.
Honda held a press briefing in Tokyo on its hydrogen business initiatives. Honda said that it will take a proactive approach to increase the use of hydrogen as an energy carrier and strive to expand its hydrogen business, in addition to continuing to electrify its products. Construction machinery. Space technology.
On behalf of the Australian Government, the Australian Renewable Energy Agency (ARENA) has opened the $70-million Renewable Hydrogen Deployment Funding Round to help fast track the development of renewable hydrogen in Australia. These projects will be expected to be among the largest electrolyzers in the world.
The technology group Wärtsilä and WEC Energy Group have successfully tested the capabilities of a Wärtsilä engine running on 25 vol% hydrogen-blended fuel. The Wärtsilä 50SG is a four-stroke, spark-ignited gas engine generating set. As a fuel, hydrogen burns without producing any carbon species including CO 2.
The Green Hydrogen Coalition, in conjunction with the Los Angeles Department of Water and Power (LADWP) and other key partners, launched HyDeal LA , an initiative to achieve at-scale green hydrogen procurement at $1.50/kilogram Green hydrogen is the key to reliably achieving 100% renewable energy. kg before 2030.
Scientists from Kyushu University and Kumamoto University in Japan have developed a new catalyst capable of assisting three key reactions for using hydrogen in energy and industry. A hydrogen energy economy will require not only catalysts capable of H 2 oxidation but also those that can put it back together again. —Ogo et al.
UK-based Expleo, a global engineering, technology and consultancy service provider, has developed a closed-loop fuel solution for global shipping that delivers a 92% reduction in greenhouse gas emissions (GHGe) in the model vessel. Expleo’s innovation also delivers significant operational savings, with the study showing OPEX reductions of £1.4
According to a new study published by the ifo Institue Center for Economic Studies (CESifo) in Germany, EVs will barely help cut CO 2 emissions in the country over the coming years, as the introduction of electric vehicles does not necessarily lead to a reduction in CO 2 emissions from road traffic given the current power generation mix.
EPC firm Black & Veatch will undertake feasibility studies central to the development of the world’s largest green hydrogen plant. When operational, Enegix Energy’s planned Base One facility in Ceará, Brazil will produce more than 600 million kilograms of green hydrogen annually. gigawatts of solar and onshore wind.
ClearFlame Engine Technologies, a startup developing net-zero engine technology ( earlier post ), announced the publication of an independent study that finds ClearFlame’s technology could help fleet owners and other heavy-duty truck operators lower total costs while meeting sustainability goals sooner than currently available alternatives.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content