This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
The project is supported by DOE’s Hydrogen and Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy. The project partners will generate zero-carbon hydrogen onsite via electrolysis with solar and wind power and reformation of renewable natural gas from a Texas landfill.
The technology group Wärtsilä is developing the combustion process in its gas engines to enable them to burn 100% hydrogen fuel. Wärtsilä has researched hydrogen as a fuel for 20 years, and has tested its engines with blends of up to 60% hydrogen and 40% natural gas.
A coalition of major oil & gas, power, automotive, fuel cell, and hydrogen companies have developed and released the full new report, a “ Road Map to a US Hydrogen Economy. ” Road Map to a US Hydrogen Economy ”. —Fuel Cell and Hydrogen Energy Association (FCHEA) President Morry Markowitz.
SK Corp, the holding company of SK Group, has made a strategic investment in Monolith , a US company that has developed a plasma-based process to produce “cyan” hydrogen—between green (via electrolysis using renewable energy) and blue (conversion of methane accompanied by CO 2 capture and storage). The Monolith process.
Japan’s New Energy and Industrial Technology Development Organization (NEDO), Toshiba Energy Systems & Solutions Corporation (Toshiba ESS), Tohoku Electric Power Co., The FH2R can produce as much as 1,200 Nm 3 of hydrogen per hour (rated power operation) using renewable energy.
million for the next phase of Gigastack, a new renewablehydrogen project, as part of the Department for Business, Energy and Industrial Strategy (BEIS) Hydrogen Supply Competition. Producing hydrogen has traditionally been associated with high carbon emissions, but by using renewableelectricity—e.g.,
Researchers at the Fraunhofer IFF in Germany are designing the distributed and modular production and distribution of green hydrogen for industry, business and transportation throughout the value chain—a hydrogen factory of the future. The hydrogen factory of the future. The outcome is always green hydrogen.
C-Job Naval Architects has designed a new class of liquid hydrogen tanker in partnership with LH2 Europe. LH2 Europe will use the abundant renewableelectricity in Scotland to produce green hydrogen and market it at a competitive price with diesel. Hydrogen will be essential to the future of energy. Length overall.
Spain-based global energy company Repsol and Talgo, a manufacturer of intercity, standard, and high speed passenger trains, will promote a renewable-hydrogen-powered train, fostering emission-free rail transport in the Iberian Peninsula. To do so, it will have an installed capacity of 400 MW by 2025 and will exceed 1.2 GW by 2030.
Cepsa—the Spain-based multinational oil and gas company—will invest more than €3 billion to establish the Andalusian Green Hydrogen Valley, creating the largest green hydrogen hub in Europe in southern Spain. The company will build two plants with a total capacity of 2 GW to produce green hydrogen.
Southern California Gas Co. SoCalGas) and H2U Technologies are testing a new electrolyzer, called the Gramme 50, for the production of green hydrogen. The green hydrogen produced by this new technology can be used for clean transportation or industrial applications or blended with natural gas.
Bloom Energy, a developer of solid oxide fuel cell power generators, announced the ability of its Energy Servers to operate on renewablehydrogen. Current Bloom Energy Servers generate electricity using natural gas or biogas as fuel.
Seven companies from the GET H2 initiative in Europe want to build a cross-border pipeline for green hydrogen. By using green hydrogen in refineries, in steel production and for other industrial uses, the overall project should be able to avoid CO 2 emissions of up to 16 million tonnes by 2030.
Minneapolis-based Xcel Energy will work with Idaho National Laboratory to demonstrate a system that uses a nuclear plant’s steam and electricity to split water. The resulting hydrogen will initially be used at the power plant, but it could eventually be sold to other industries. Earlier post.) Prairie Island.
A consortium comprising Engie Solutions, Siemens Gas and Power, Centrax, Arttic, German Aerospace Center (DLR) and four European universities is implementing the HYFLEXPOWER project funded by the European Commission under the Horizon 2020 Framework Program for Research and Innovation (Grant Agreement 884229).
Airbus is developing a hydrogen-powered fuel cell engine. The A380 MSN1 flight test aircraft for new hydrogen technologies is currently being modified to carry liquid hydrogen tanks and their associated distribution systems. There are two ways hydrogen can be used as a power source for aircraft propulsion. Earlier post.).
Southern California Gas Co. SoCalGas) will demonstrate a combination of technologies that will produce hydrogen from renewable natural gas (RNG) at SunLine Transit Agency’s hydrogen fueling station in Thousand Palms, California. The SunLine location will be able to produce up to 650 kilograms of hydrogen a day.
Europe’s largest PEM hydrogen electrolyzer, has begun operations at Shell’s Energy and Chemicals Park Rheinland, producing green hydrogen. A plant for liquefied renewable natural gas (bio-LNG) is also in development. The green hydrogen will also be used to help decarbonize other industries. Earlier post.).
GKN Hydrogen and Southern California Gas Co. SoCalGas) will work with the US Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL) on an innovative green hydrogen storage solution. GKN Hydrogen’s HY2MEGA can enable safe, long duration clean energy storage without the need for compression.
Ultra Safe Nuclear Corporation (USNC), a US-based vertical integrator of nuclear technologies and services, Hyundai Engineering and SK E&C are teaming up to conduct research and development for carbon-free hydrogen production. It is also participating in a government-led green hydrogen production demonstration project.
in conjunction with the Government of Canada and the Province of Alberta, announced a multi-billion dollar plan to build a landmark new net-zero blue hydrogen energy complex. Canada’s clean energy diversification strategy and regulatory framework make clear that hydrogen is a key enabler for carbon neutrality by 2050. blue hydrogen).
million) ammonia cracker prototype designed to produce green hydrogen at industrial scale. The prototype will use ammonia to deliver 200kg of hydrogen a day—enough to power around 5-10 hydrogen fuel cell-electric buses. We have just 13 years to deliver a net-zero electricity grid for the UK. million (US$4.24
Trillium has completed construction of the largest hydrogen transit refueling station in North America. The Santa Ana, California hydrogen station, which went live Friday, was jointly developed by Trillium, Air Products, the Center for Transportation and the Environment (CTE), Ballard Fuel Systems and New Flyer.
Italy-based Snam, a global energy infrastructure company, and RINA, a global testing, inspection, certification and engineering consultancy services firm, have signed a Memorandum of Understanding to collaborate in the hydrogen sector, in order to realize the significant potential of hydrogen as a fundamental energy carrier.
While there is global potential to generate renewable energy at costs already competitive with fossil fuels, a means of storing and transporting this energy at a very large scale is a roadblock to large-scale investment, development and deployment. Generation 2 moves the Haber-Bosch process to renewable sources of hydrogen.
Despite the much-vaunted megatrend involving the global electrification drive and shift to renewable energy , the most ambitious pledges by Big Oil to pursue net-zero agendas remain weak at best. Indeed, much of Big Oil's reduction in greenhouse gas (GHG) emissions leans on the so-called natural gas bridge. 2 Total SA.
The European Commission’s Joint Research Center (JRC) published a policy brief showing that delivery of large amounts of renewablehydrogen over long distances could be cost-effective. For its transport, hydrogen is either compressed, liquefied or converted into a hydrogen carrier such as ammonia or liquid organic hydrogen carriers.
The US Department of Energy (DOE) released draft guidance for a Clean Hydrogen Production Standard (CHPS), developed to meet the requirements of the Bipartisan Infrastructure Law (BIL), Section 40315. by employing high rates of carbon capture, using low-carbon electricity, or mitigating upstream methane emissions).
Researchers at Monash University in Australia have conducted a lifecycle analysis and net energy analysis (LCA/NEA) of a hypothetical large-scale solar-electrolysis plant for the production of green hydrogen. of hydrogen is currently produced via water electrolysis and only a fraction of this production is powered by renewable energy.
With efficiencies above 90%, Topsoe’s proprietary SOEC electrolyzers offer superior performance in electrolysis of water into hydrogen—e.g., SOECs can be used for direct electrochemical conversion of steam (H 2 O), carbon dioxide (CO 2 ), or both into hydrogen (H 2 ), carbon monoxide (CO), or syngas (H 2 +CO), respectively.
Solid-oxide-fuel-cell manufacturer Bloom Energy is entering the commercial hydrogen market by introducing hydrogen-powered fuel cells and electrolyzers that produce renewablehydrogen. Bloom’s technologies can be critical in enabling South Korea to execute on its government-mandated Hydrogen Economy Roadmap.
Raven SR plans to use INNIO’s Jenbacher engines [60 Hz] with a “Ready for H2” option to produce renewable energy. The energy system will power and heat Raven SR’s S-Series hydrogen production facility at a sanitary landfill in Richmond, California. The hydrogen product will be resold to power fuel cells in heavy-duty trucks.
Ørsted, the world’s leading offshore wind developer, together with the major industrial companies in the North Sea Port cluster, have launched the SeaH2Land vision for a gigawatt scale project to reduce carbon emissions in the Dutch-Flemish industrial cluster with renewablehydrogen.
The partners will collaborate in the development of ecosystems for heavy-duty trucks running on hydrogen, with the intent to demonstrate the attractiveness and effectiveness of trucking powered by clean hydrogen and the ambition to play a lead role in kickstarting the rollout of hydrogen infrastructure for transportation.
The European Union adopted strategies for energy system integration and hydrogen, paving the way “towards a more efficient and interconnected energy sector, driven by the twin goals of a cleaner planet and a stronger economy.”. The Commission will propose a new classification and certification system for renewable and low-carbon fuels.
million to fund 31 projects to advance next-generation clean hydrogen technologies and support DOE’s recently announced Hydrogen Energy Earthshot initiative ( earlier post ) to reduce the cost and accelerate breakthroughs in the clean hydrogen sector. Domestic hydrogen supply chain components and refueling technologies.
The Western Australia Government of Premier Mark McGowan will bring forward the Western Australian RenewableHydrogen Strategy targets by a decade and invest $22 million to develop hydrogen supply, meet growing demand for the clean fuel and create jobs. The McGowan Government has committed $5.7
All of these concepts rely on hydrogen as a primary power source—an option which Airbus believes holds exceptional promise as a clean aviation fuel and is likely to be a solution for aerospace and many other industries to meet their climate-neutral targets. —Guillaume Faury, Airbus CEO.
A hydrogen exchange, similar to electricity and gas exchanges, could act as a catalyst for a market for climate-neutral hydrogen, according to an exploratory study, “A Hydrogen Exchange for the Climate”, presented to Eric Wiebes, the Netherlands Minister of Economic Affairs and Climate Policy.
Markus Krebber (RWE), accompanied by Chairman of the Mining, Chemical and Energy Industries Union (IG BCE) Michael Vassiliadis, presented a project idea that envisions a new 2 GW offshore wind farm in the German North Sea to provide the Ludwigshafen chemical site with green electricity and enable CO 2 -free production of hydrogen.
million in federal funding for cost-shared research and development projects under the funding opportunity announcement (FOA) FE-FOA 0002397 , University Turbines Systems Research (UTSR) — Focus on Hydrogen Fuels. The UTSR Program conducts research to increase the efficiency and performance of gas turbines while lowering emissions.
million) to five demonstration phase projects for low-carbon hydrogen production. The hydrogen projects receiving funding are: Dolphyn. The project concerns the production of hydrogen at scale from offshore floating wind in deep water locations. HyNet – low carbon hydrogen plant. Acorn Hydrogen Project.
Leading Australian energy infrastructure company Jemena has signed a new deal to supply Australia’s emerging zero emission vehicle industry with renewably generated green hydrogen. Jemena’s Managing Director, Frank Tudor, said the deal will make hydrogengas generated from solar and wind power available to the vehicle industry.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content