Remove Gas-Electric Remove Gasoline-Electric Remove Oil-Sands
article thumbnail

Researchers develop large-scale, economical method to extract hydrogen from oil sands and oil fields

Green Car Congress

Canadian researchers have developed a large-scale economical method to extract hydrogen from oil sands (natural bitumen) and oil fields. This can be used to power hydrogen-powered vehicles, which are already marketed in some countries, as well as to generate electricity. Proton Technologies is commercializing the process.

Oil-Sands 375
article thumbnail

IHS CERA meta-analysis finds lifecycle GHG emissions for fuel produced solely from oil sands crude average 11% higher than from average crude refined in the US; high variability

Green Car Congress

Average values for WTW GHG emissions for oil sands and other crudes, tight boundary. When the oil sands products refined in the United States are considered—a mixture of oil sands and lower-carbon blending components—the GHG emissions are, on average, 9% higher than the average crude processed in the US.

Oil-Sands 388
article thumbnail

Oil sands GHG lifecycle study using operating data finds lower emitting oil sands cases outperform higher emitting conventional crude cases; a call for more sophisticated tools and reporting

Green Car Congress

Well-to-wheel (WTW) greenhouse gas emissions for in situ SAGD and surface mining pathways generated employing GHOST/TIAX/ GHGenius combination and comparison with SAGD, mining and conventional crude oil literature pathways (all results are on a HHV basis). 74% of WTW emissions in our oil sands pathways. Click to enlarge.

Oil-Sands 287
article thumbnail

Understanding the variability of GHG life cycle studies of oil sands production

Green Car Congress

Full-fuel-cycle GHG emissions estimates for reformulated gasoline pathways by LCA study. He found that the variation in oil sands GHG estimates is due to a variety of causes. These include oil sands, enhanced oil recovery, coal-to-liquids and gas-to-liquids synthetic fuels, and oil shale.

Oil-Sands 225
article thumbnail

Average carbon intensity of oil sands production has dropped ~36% in last 40 years; still 12-24% higher than conventional oil CI

Green Car Congress

The carbon intensity (CI) of Alberta oil sands production has significantly decreased over the last 40 years, according to a new study by a team from Stanford University published as an open access paper in the journal Environmental Research Letters. Trends in well-to-wheel pathway-specific CI. Click to enlarge.

Oil-Sands 210
article thumbnail

Study finds plausibly high volumes of Canadian oil sands crudes in US refineries in 2025 would lead to modest increases in refinery CO2 emissions

Green Car Congress

An analysis of the US refining sector, based on linear programming (LP) modeling, finds that refining plausibly high volumes of Canadian oil sands crudes in US refineries in 2025 would lead to a modest increase in refinery CO 2 emissions (ranging between 5.4% to 9.3%) from a 2010 baseline, depending upon the supply scenario.

Oil-Sands 247
article thumbnail

ExxonMobil Outlook projects hybrids and advanced vehicles to account for nearly 50% of cars globally by 2040; fuel demand for for personal vehicles to peak and decline, while commercial transportation demand rises 70%

Green Car Congress

While oil will remain the most widely used fuel, overall energy demand will be reshaped by a continued shift toward less-carbon-intensive energy source as well as steep improvements in energy efficiency in areas such as transportation, where the expanded use of advanced and hybrid vehicles will help push average new-car fuel economy to 48 mpg (4.9

Personal 408