This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Washington State University researchers have developed an innovative way to convert waste polyethylene plastic to ingredients for jet fuel and other valuable products, making it easier and more cost-effective to reuse plastics. The maximum yields of the jet-fuel- and lubricant-range hydrocarbons were 60.8 2021.04.002.
announced the completion of a facility in Tokyo that will convert sewage sludge into renewable hydrogen fuel for fuel cell mobility and power generation. A new facility in Tokyo that will convert sewage sludge into renewable hydrogen gas for fuel-cell vehicles is nearing completion. and is commercialized worldwide by Ways2H.
Texas A&M University (TAMU) engineering researchers have devised a simple, proliferation-resistant approach for separating out different components of nuclear waste. A typical nuclear reactor uses only a small fraction of its fuel rod to produce power before the energy-generating reaction naturally terminates.
Their paper was presented at the ASME Internal Combustion Engine Division 2012 Fall Technical Conference by Marcello Canova, assistant professor at OSU; lead author was Philipp Skarke, from the University of Stuttgart Institute for Internal Combustion Engines and Automotive Engineering. —Skarke et al. The OSU EcoCAR PHEV powertrain.
MP Materials has received a $3-million award from the Department of Energy (DOE) to complete a feasibility study, working with the University of Kentucky (UK), on a system to produce rare earth oxides, metals, and other critical materials recovered from coal by-products.
The US Department of Energy’s (DOE’s) Advanced Research Projects Agency - Energy (ARPA-E) will award $38 million to 12 projects that will work to reduce the impacts of light-water reactor used nuclear fuel (UNF) disposal. Most of the nation’s used fuel is stored at more than 70 reactor sites across the country. Earlier post.)
The technologies work as a system that converts organic waste into renewable hydrogen gas for use as a biofuel. The system combines biology and electrochemistry to degrade organic waste—such as plant biomass or food waste—to produce hydrogen.
A team from the University of Calgary and Rice University has used flash joule heating (FJH) ( earlier post ) to convert low-value asphaltenes—a by-product of crude oil refining—into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG). Flash graphene from asphaltenes. (A)
Altalto Immingham Limited, a subsidiary of renewable fuels company Velocys and a collaboration with British Airways and Shell, has submitted a planning application to develop its site in Immingham, North East Lincolnshire, close to the Humber Estuary. million gallons US) of cleaner-burning sustainable jet and road fuel each year.
Kazunari Domen from The University of Tokyo, Prof. Lianzhou Wang from The University of Queensland, Prof. Gang Liu from the Institute of Metal Research, CAS, has now initiated the establishment of international efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production.
The EU-funded research project HyFlexFuel recently successfully produced biocrudes via hydrothermal liquefaction (HTL) from a variety of biomasses, including sewage sludge, food waste, manure, wheat straw, corn stover, pine sawdust, miscanthus and microalgae in a pilot-scale continuous HTL plant at Aarhus University (Denmark).
Biofuels producer Renewable Energy Group joined Iowa State University (ISU) at the BioCentury Research Farm (BCRF) to mark the start of a new hydrotreater pilot plant. REG converts waste and byproduct fats and oils into biodiesel and renewable diesel.
The university’s Parking and Transportation Services and Cal State LA Hydrogen Research and Fueling Facility received a best practice award for sustainable transportation in the 2019 Energy Efficiency and Sustainability Best Practice Awards competition. for each additional hour.
The UK Department for Transport has shortlisted 8 industry-led projects to receive a share of £15 million (US$21 million) in the Green Fuels, Green Skies (GFGS) competition for the development of sustainable aviation fuels (SAF) production plants in the UK. It could also increase UK fuel security. Green Fuels Research Ltd.
million metric tonnes (Mt) of electronic waste was generated worldwide in 2019, up 21% in just five years, according to the UN’s Global E-waste Monitor 2020. of 2019’s e-waste was collected and recycled. According to the report, Asia generated the greatest volume of e-waste in 2019—some 24.9 A record 53.6
A new approach developed by researchers at the Norwegian University of Science and Technology (NTNU) could alleviate that situation a bit by using waste heat from other industrial processes. Energy experts say that the waste heat from Norway’s businesses and industries is the equivalent of 20 TWh of energy. Illustration: NTNU.
Researchers from London South Bank University (LSBU), School of the Built Environment and Architecture, are investigating the use of metal hydrides to absorb, release and store hydrogen for fuel cell buses. On demand, the hydrogen is released from the hydride (endothermic reaction), utilizing the waste heat of the fuel cell.
IH 2 is a new thermochemical process that employs a catalyzed fluidized bed hydropyrolysis step followed by an integrated hydroconversion step to directly convert biomass into high-quality, fungible hydrocarbon fuels. IH 2 derived fuels contain less than 1% oxygen and are completely compatible with petroleum-derived fuels.
Historically, clean-burning fuels, and those that are easy to make from waste CO 2 streams or syngas, have failed to ignite using MCCI. The ClearFlame solution leverages diesel-style mixing-controlled compression ignition (MCCI). In fact, it increases power by 25%.
The US Department of Energy (DOE) awarded $19 million for 13 projects in traditionally fossil-fuel-producing communities across the country to support production of rare earth elements and critical minerals essential to the manufacturing of batteries, magnets, and other components important to the clean energy economy.
In Australia, QUT researchers and Mercurius Australia are partnering on a pilot plant to prove the economic viability of turning sugarcane waste into either jet and diesel fuel or chemicals that could be used to make plastic soft drink and beer bottles. The final step is a hydrotreating process to deoxygenate the intermediates.
Volkswagen and Stanford University have developed in partnership a new catalyst production process to reduce the comparatively high cost of automotive fuel cell technology. One of the biggest cost drivers for fuel cells is the use of the precious metal platinum as a catalyst to operate the fuel cell.
ClearFlame will provide Alto with a Class VIII truck retrofitted with a 500hp heavy-duty demonstration engine, which can match diesel torque and efficiency by achieving true diesel-style combustion (MCCI, mixing-controlled compression ignition) of any decarbonized fuel. In fact, it increases power by 25%.
Researchers at Henan Polytechnic University in China have hydrotreated the oil derived from hydrothermal liquefaction of scrap tires (STO) with waste engine oil (WEO) using five different activated carbon-supported noble metal catalysts—Pd/C, Pt/C, Ru/C, Ir/C, and Rh/C—for the production of liquid fuels.
million in federal funding for cost-shared research and development projects under the funding opportunity announcement (FOA) FE-FOA 0002397 , University Turbines Systems Research (UTSR) — Focus on Hydrogen Fuels. There is renewed interest in the use of hydrogen, a clean-burning fuel, for turbine-based electricity generation.
A team of scientists from LanzaTech, Northwestern University and the Department of Energy’s Oak Ridge National Laboratory have engineered a microbe to convert molecules of industrial waste gases, such as carbon dioxide and carbon monoxide, into acetone and isopropanol (IPA). —Jennifer Holmgren, CEO of LanzaTech.
As British Airways looks towards its Centenary next year, the airline, in collaboration with Cranfield University, has challenged academics from across the UK to develop a sustainable alternative fuel which could power a commercial aircraft on a long-haul flight, carrying up to 300 customers with zero net emissions.
Rice University scientists and their colleagues at C-Crete Technologies have optimized a process to convert waste from rubber tires into graphene that can, in turn, be used to strengthen concrete. After useful oils are extracted from waste tires, this carbon residue has until now had near-zero value, Tour said. 2021.03.020.
Researchers at the University of have developed an unusually rapid method to deliver cost-effective algal biocrude in large quantities using a specially-designed jet mixer. Even as electrified vehicles penetrate the short distance transportation market, high energy density transportation fuels remain essential to long distance transportation.
Biomass feedstocks can be produced by municipal solid waste (MSW) streams and algae and converted into low-carbon fuels that can significantly contribute to the decarbonization of transportation sectors that face barriers to electrification, such as aviation and marine. University of Maryland: College Park. Lehigh University.
With the goal of boosting the circular economy, energy efficiency and emissions reduction, SEAT is currently working on the Life Methamorphosis project to obtain biomethane from previously selected waste and animal slurry from a farm in Lleida.
In the Netherlands, Wageningen University & Research (WUR) and its partners have developed a new type of aviation fuel produced using bio-based waste streams from the agriculture industry. The new fuel is based on a mixture of acetone and alcohol.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —senior author Professor Erwin Reisner.
Initial life cycle assessments demonstrate either reduced carbon emissions compared with current methods of carbon black production or the use of bio-based or waste feedstock sources. Silica is an ingredient often used in tires to help improve grip and reduce fuel consumption.
Under the terms of the agreement, XL Fleet and Curbtender will jointly develop a series of battery electric (BEV) and plug-in hybrid electric (PHEV) commercial trucks for use in waste management applications. The Quantum is the US Waste Industry’s #1 selling small rear loader. Curbtender Quantum.
A team led by researchers at the University of Cordoba (Spain) have used a CaO alkaline heterogeneous catalyst to produce what they call a “second-generation biodiesel” blend composed of 2:1 molar mixture of conventional fatty acid methyl esters (FAME, or regular biodiesel) and monoglyceride (MG). 2014.01.033. Biodiesel'
Ricardo is advancing its work with two novel technologies to improve the efficiency of heavy-duty goods vehicles: a cryogenic split-cycle engine “ CryoPower ” ( earlier post ), and a low-carbon waste-heat powered microwave fuel reformer “ HeatWave II ”. Diesel Engines Fuels Heavy-duty Vehicle Systems Waste Heat Recovery'
The Dearman project is to deliver a production-feasible waste-heat recovery system for urban commercial vehicles, which offers life-cycle CO 2 savings of up to 40%; fuel savings of 25%, with the potential of up to almost 50%; and potential payback in less than three years. Earlier post. ). Other IDP10 awards. million (US$4.37
High-density polyethylene (HDPE) grocery bags can be successfully pyrolyzed to alternative diesel fuel, according to a new study by a team from the Illinois Sustainable Technology Center (ISTC) at the University of Illinois, Urbana-Champaign and the United States Department of Agriculture (USDA) Agricultural Research Service ARS.
Researchers led by a team at Washington State University (WSU) have developed a unique and inexpensive nanoparticle catalyst that allows a solid-oxide fuel cell to convert logistic liquid fuels such as gasoline to electricity without stalling out during the electrochemical process. —Qusay Bkour, lead author. Bkour et al.
A large-scale demonstration converting biocrude to renewable diesel fuel has passed a significant test, operating for more than 2,000 hours continuously without losing effectiveness. The biocrude oil came from many different sources, including wastewater sludge from Detroit, and food waste collected from prison and an army base.
A University of Manchester project has received UK Government funding to innovate a novel technique to recover hydrogen fuel from waste. The post University of Manchester project to recover hydrogen fuel from waste appeared first on Innovation News Network.
a leading waste-to-biofuels and chemicals producer, has completed a C$280-million (US$223 million) investment round—its largest to date. The technology converts non-recyclable, non-compostable municipal solid waste into methanol, ethanol and other widely-used chemicals. Canada-based Enerkem Inc.,
Researchers from Newcastle University in the UK have engineered Escherichia coli bacteria to capture carbon dioxide using hydrogen gas to convert it into formic acid. Then we can make fuel, plastic or chemicals. Escherichia coli is gram-negative bacterium that is a workhorse for biotechnology. “We We wanted to try this in the lab.”.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content