This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Norwegian wholesaler Asko is among the first to operate a goods vehicle that runs on hydrogen, thanks to a collaborative effort by research scientists and industry. The on-board charger is 22 kW AC with CCS charging interface, and hydrogen storage is 33 kg @350 bar. The aim here is not to use hydrogen for all goods transport.
China-based SANY, one of the largest construction equipment manufacturers in the world, is developing hydrogenfuel cell construction vehicles; two recent examples include a dump truck and a mixer truck, freshly rolled out of SANY’s intelligent flagship factory. The latter is the first hydrogen-powered mixer truck in the world.
Researchers from the Chinese Academy of Sciences and Tsinghua University have used a gallium, indium, tin and bismuth alloy to generate hydrogen, when placed in contact with an aluminum plate immersed in water. The hydrogen is then used in a PEM fuel cell. In the 1960s, Woodall et al. In 2015, Zhang et al.
Airbus is developing a hydrogen-powered fuel cell engine. Airbus will start ground and flight testing this fuel cell engine architecture onboard its ZEROe demonstrator aircraft towards the middle of the decade. There are two ways hydrogen can be used as a power source for aircraft propulsion.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogenfuel using solar energy. The microstructured optical fiber canes (MOFCs) with photocatalyst generate hydrogen that could power a wide range of sustainable applications.
The EU-funded HyMethShip project developed a system that innovatively combined a membrane reactor, a CO 2 capture system, a storage system for CO 2 and methanol as well as a hydrogen-fueled combustion engine to power ships. The bottom part shows how hydrogen for the engine is obtained from methanol in the reactor (blue arrow).
Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. This will significantly reduce overall CO 2 emissions.
Researchers at the University of Ontario Institute of Technology are developing a new method to dissociate water vapor into hydrogen gas by microwave-generated plasma (plasmolysis). A paper on their work appears in the journal Fuel. (A) The generation of pure hydrogen gas requires a great deal of energy. Chehade et al.
Apart from the rapid development of battery technology, hydrogen is a good complementary option as an alternative fuel for long-distance transport. MAN is testing both the use of a fuel cell and an H 2 combustion engine. When in use, fuel cells do not cause any climate-damaging emissions, as they only emit water vapor.
A study by a team of researchers from Technische Universität Berlin (TUB) and Fritz-Haber-Institut der Max-Planck-Gesellschaft has found that direct seawater splitting for hydrogen production has substantial drawbacks compared to conventional water splitting and offers almost no advantage. Diess et al.
Cummins is powering the world’s first fleet of hydrogen trains in Bremervörde, Lower Saxony, Germany. The Alstom Coradia iLint trains ( earlier post ) are outfitted with Cummins fuel cell systems and will run on the world’s first 100%-hydrogen train route in passenger operation.
C-Job Naval Architects has designed a new class of liquid hydrogen tanker in partnership with LH2 Europe. LH2 Europe will use the abundant renewable electricity in Scotland to produce green hydrogen and market it at a competitive price with diesel. Hydrogen will be essential to the future of energy. Vessel specifications.
Extended road testing of the vehicle is underway in Asia and represents a significant step towards the commercialization of e1’s onboard hydrogen generation technology. The company stated that it is becoming increasingly engaged with partners around the world on a wide range of hydrogen energy projects. —Dave Edlund, e1 CEO.
The Sparc Green Hydrogen process combines concentrated solar (CS) with photocatalytic water splitting. This testing has shown a hydrogen production and efficiency benefit from exposing certain photocatalyst materials to concentrated light and heat. A second round of testing later in the year will be considered pending results.
Honda held a press briefing in Tokyo on its hydrogen business initiatives. Honda said that it will take a proactive approach to increase the use of hydrogen as an energy carrier and strive to expand its hydrogen business, in addition to continuing to electrify its products. in California.
BMW has begun fuel cell system production at the company’s competence center for hydrogen in Munich. A small series of BMW iX5 Hydrogen cars will be entering service around the world from the end of this year for test and demonstration purposes. The two companies have been collaborating on fuel cell drive systems since 2013.
The technology group Wärtsilä is developing the combustion process in its gas engines to enable them to burn 100% hydrogenfuel. Wärtsilä has researched hydrogen as a fuel for 20 years, and has tested its engines with blends of up to 60% hydrogen and 40% natural gas.
EPFL researchers have built a pilot-scale solar reactor that produces usable heat and oxygen, in addition to generating hydrogen with unprecedented efficiency for its size. This is the first system-level demonstration of solar hydrogen generation. Holmes-Gentle et al.
Minneapolis-based Xcel Energy will work with Idaho National Laboratory to demonstrate a system that uses a nuclear plant’s steam and electricity to split water. The resulting hydrogen will initially be used at the power plant, but it could eventually be sold to other industries. Earlier post.) Prairie Island.
ABB and Canada-based Hydrogen Optimized have signed an agreement to expand the companies’ existing strategic relationship. KEY), the parent company of HOI, as they seek to accelerate the fast-emerging green hydrogen production segment with unique large-scale architecture. This includes an investment by ABB into Key DH Technologies Inc.
Toyota has commissioned Victoria’s first commercial-grade permanent hydrogen production, storage and refuelling facility at its former manufacturing site at Altona in Melbourne’s west. Sustainably produced hydrogen is the core element to fuel vehicles like the Toyota Mirai FCEV.
Purem by Eberspaecher is introducing efficient exhaust technology for hydrogen engines. The H 2 -ICE exhaust system for hydrogen engines from Purem by Eberspaecher. Hydrogen engines have potential as a drive type with CO 2 -neutral fuel, especially for heavy-load transport and in off-highway vehicles.
Scottish Enterprise, Transport Scotland and the Hydrogen Accelerator, based at the University of St Andrews, have appointed Arcola Energy and a consortium of industry leaders in hydrogenfuel cell integration, rail engineering and functional safety to deliver Scotland’s first hydrogen powered train.
Africa can produce 50 million tons of green hydrogen a year by 2035, according to a new study by the European Investment Bank (EIB), International Solar Alliance and the African Union, with the support of the Government of Mauritania, HyDeal and UCLG Africa. This is equivalent to energy costs of US$60 a barrel.
This award marks the first Advanced Class Gas Turbines in the industry specifically designed and purchased as part of a comprehensive plan to sequentially transition from coal, to natural gas and finally to renewable hydrogenfuel, and creates a roadmap for the global industry to follow. MHPS gas turbines have more than 3.5
Toshiba Energy Systems & Solutions Corporation (Toshiba ESS) announced that its hydrogen-based autonomous energy supply system H2One, which Toshiba ESS delivered and installed on the rooftop of Toranomon Hills Business Tower (Minato-ku, Tokyo), has started full-scale operation with the opening of commercial facilities.
Alstom will supply six hydrogenfuel cell trains, with the option for eight more, to FNM (Ferrovie Nord Milano), the main transport and mobility group in the Italian region of Lombardy, for a total amount of approximately €160 million. The hydrogen version will match the operational performance of diesel trains, including their range.
million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. Westinghouse Electric Company, Front-End Engineering Designs and Investigative Studies for Integrating Commercial Electrolysis Hydrogen Production with Selected Light-Water Reactors.
China Petroleum & Chemical Corporation (Sinopec) officially launched China’s first methanol-to-hydrogen and hydrogen refueling service station in Dalian, China. The storage and transportation cost of methanol is also much lower than hydrogen, making methanol-to-hydrogen an attractive hydrogen production technology.
Researchers at Ariel University in Israel have developed a new type of hydrogen generator for “on-demand” use with fuel cells. Hydrogen is produced in a catalytic hydrolysis reaction of sodium borohydride (NaBH 4 ) with ruthenium powder as a catalyst. Zakhvatkin et al. —Zakhvatkin et al. 1c00367.
and their partners, designed and built a fuel cell range extender system for battery-electric buses. Depending on a power demand sent by the vehicle, the fuel cell system generates the power needed for the propulsion of the vehicle as well as charges the vehicle’s traction battery. The range extender includes a system with two stacks.
With efficiencies above 90%, Topsoe’s proprietary SOEC electrolyzers offer superior performance in electrolysis of water into hydrogen—e.g., SOECs can be used for direct electrochemical conversion of steam (H 2 O), carbon dioxide (CO 2 ), or both into hydrogen (H 2 ), carbon monoxide (CO), or syngas (H 2 +CO), respectively.
million) ammonia cracker prototype designed to produce green hydrogen at industrial scale. The prototype will use ammonia to deliver 200kg of hydrogen a day—enough to power around 5-10 hydrogenfuel cell-electric buses. Ammonia has a high hydrogen density and is readily transportable in bulk. million (US$4.24
Using a hematite photocatalyst, a team led by researchers from Kobe University has succeeded in producing both hydrogen gas and hydrogen peroxide at the same time from sunlight and water. Hydrogen has gained attention as one of the possible next generation energy sources. under 600nm). Tachikawa et al.
PEUGEOT has become one of the first manufacturers to offer in series production, from 2021 onwards in the compact utility van segment, an electric version powered by a hydrogenfuel cell in addition to its battery-electric version. It emits only water vapor through the exhaust pipe. kg at a pressure of 700 bar.
Canada-based Aurora Hydrogen, a company developing emission-free hydrogen production technology, has raised $10 million in Series A funding led by Energy Innovation Capital. As the world looks to quickly decarbonize transportation and industry, hydrogen demand is expected to increase rapidly, from $130 billion today to $2.5
Brookhaven National Laboratory, and the National Renewable Energy Laboratory (NREL) will work over the next few years to bring to market high-temperature proton exchange membrane (HT-PEM) fuel cells. Artist’s concept of a heavy-duty vehicle equipped with high-temperature proton exchange membrane (HT-PEM) fuel cells.
a waste-to-fuels company, closed a $20-million strategic investment from Chevron USA, ITOCHU, Hyzon Motors and Ascent Hydrogen Fund. Raven SR plans to build modular waste-to-green hydrogen production units and renewable synthetic fuel facilities initially in California and then worldwide. Raven SR Inc., Earlier post.).
thyssenkrupp’s proprietary water electrolysis technology for the production of. green hydrogen meets the requirements for participation in the primary control reserve market. Our plants are thus making a significant contribution to ensuring both a stable power supply and the cost-effectiveness of green hydrogen.
Element 1 Corporation (e1NA), Zhejiang Methanol Hydrogen Technology (ZMHT) and Zhejiang Element 1 (e1China) have formed a joint venture company—Zhejiang Hydrogen One Energy Technology Co., — to drive methanol-based hydrogen generation technology and commercialize e1NA’s technology throughout Greater China.
and Iwatani Corporation announced that Fukushima Hydrogen Energy Research Field (FH2R), which had been under construction in Namie town, Fukushima Prefecture since 2018, has been constructed with a solar-energy-powered 10MW-class hydrogen production unit, the largest in the world, at the end of February.
Researchers at the University of Oxford have developed a method to convert CO 2 directly into aviation fuel using a novel, inexpensive iron-based catalyst. Jet fuel can then be obtained from the products after industrially recognized treatments such as distillation or hydro-isomerization. Fe 5 C 2 respectively.
A team from Fraunhofer IPT is developing a continuous production line that will be able to process fuel cell components in cycles lasting just seconds. The aim of the three institutes, which specialize in the field of manufacturing, is to accelerate the economic breakthrough of fuel cells and electrolyzers both nationally and internationally.
Ultra Safe Nuclear Corporation (USNC), a US-based vertical integrator of nuclear technologies and services, Hyundai Engineering and SK E&C are teaming up to conduct research and development for carbon-free hydrogen production. It is also participating in a government-led green hydrogen production demonstration project.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content