This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Africa can produce 50 million tons of green hydrogen a year by 2035, according to a new study by the European Investment Bank (EIB), International Solar Alliance and the African Union, with the support of the Government of Mauritania, HyDeal and UCLG Africa.
New investment in wind, solar, and other clean energy projects in developing nations dropped sharply in 2018, largely due to a slowdown in China. This is due to wind and solar projects generating only when natural resources are available while oil, coal, and gas plants can potentially produce around the clock. billion and $2.7
To increase and improve the sector, Estonia is not only spending heavily on RD&D for biomass-based energy, wind and solar power, but it is also pursuing solutions such as fuel cells and electrolyzers as well as computer-based energy management technologies for buildings, power storage and grid development.
The transcontinental connection would start with wind, solar, and hydropower generated in Azerbaijan and Georgia, and off-shore wind power generated in the Caspian Sea. The Australia-Asia PowerLink project aims to produce 6 GW at a vast solar farm in Northern Australia and send about a third of it to Singapore via a 4,300-km undersea cable.
With a functioning AfCFTA, the DRC can receive other upstream mineral inputs needed for lithium-ion batteries—such as manganese from, say, South Africa and Madagascar, copper from Zambia, graphite from Mozambique and Tanzania, phosphate from Morocco, and lithium from Zimbabwe, to name but a few.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content