This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Alfa Laval is introducing the E-PowerPack waste heat recovery system for ships. Able to convert waste heat directly into electrical power, the E-PowerPack uses Organic Rankine Cycle (ORC) technology to reduce ship fuel consumption and CO 2 emissions. All can make a sizeable difference.
Energy company SGH2 is bringing the world’s biggest green hydrogen production facility to Lancaster, California. In the gasification island’s catalyst-bed chamber, plasma torches generate such high temperatures (3500 ºC - 4000 ºC), that the waste feedstock disintegrates into its molecular compounds, without combustion ash or toxic fly ash.
Greenergy will invest in Front End Engineering Design (FEED) of a project to produce low-carbon transportation fuels from waste tires. In the first phase, the planned facility will process up to 300 tons of shredded tires each day to produce low-carbon, low-sulfur drop-in fuels that can be blended into diesel and gasoline.
An open-access paper on their results is published in the journal ACS Sustainable Chemistry & Engineering. Meanwhile, wet waste feedstocks, such as animal manure and fats, oils, and greases (FOG), represent another important category of resources that could be utilized to produce MCCI bioblendstocks due to its abundant availability.
Washington State University researchers have developed an innovative way to convert waste polyethylene plastic to ingredients for jet fuel and other valuable products, making it easier and more cost-effective to reuse plastics. The maximum yields of the jet-fuel- and lubricant-range hydrocarbons were 60.8 wt %, respectively.
Diamond Green Diesel facility in Norco, La., Diamond Green Diesel is owned by Valero Energy Corp. Diamond Green Diesel is owned by Valero Energy Corp. The Diamond Green Diesel facility converts inedible oils and other waste fats into a high-quality renewable diesel fuel. and Darling Ingredients Inc.,
Texas A&M University (TAMU) engineering researchers have devised a simple, proliferation-resistant approach for separating out different components of nuclear waste. A typical nuclear reactor uses only a small fraction of its fuel rod to produce power before the energy-generating reaction naturally terminates.
Energy Vault, a company developing grid-scale gravity energy storage solutions, has entered into an energy storage system agreement with DG Fuels, a developer of renewable hydrogen and biogenic-based, synthetic sustainable aviation fuel (SAF) and diesel fuel. DG Fuels expects to complete its Louisiana SAF project by mid-2022.
Rolls-Royce has conducted the first tests of 100% Sustainable Aviation Fuel (SAF) in a business jet engine. The Trent 1000 is a high-bypass turbofan engine produced that is one of the engine options for the Boeing 787. —Dr Joerg Au, Chief Engineer – Business Aviation and Engineering Director Rolls-Royce Deutschland.
PACCAR will work with Cummins to offer the new Cummins X15N natural gas engine ( earlier post ) in Kenworth and Peterbilt trucks. The X15N is the first natural gas engine to be designed specifically for heavy-duty truck applications with up to 500 horsepower output.
Startup ClearFlame Engine Technologies announced a partnership with Alto Ingredients, a leading producer of specialty alcohols and essential ingredients, to conduct pilot demonstrations of ClearFlame’s solution for diesel engines using low-cost ethanol in Class 8 trucks. In fact, it increases power by 25%.
will bring to market a 15-liter natural gas engine for heavy-duty trucks. The 15-liter natural gas engine is an important part of Cummins strategy for its path to zero emissions. —Srikanth Padmanabhan, President, Engine Business, Cummins. Cummins Inc. gCO 2 e/MJ.
ClearFlame Engine Technologies , a growing startup dedicated to the development of clean engine technology ( earlier post ), secured $2.5 Historically, clean-burning fuels, and those that are easy to make from waste CO 2 streams or syngas, have failed to ignite using MCCI. In fact, it increases power by 25%.
The UK Department for Transport has shortlisted 8 industry-led projects to receive a share of £15 million (US$21 million) in the GreenFuels, Green Skies (GFGS) competition for the development of sustainable aviation fuels (SAF) production plants in the UK. It could also increase UK fuel security. billion (US$2.3
The two companies plan to build the first US modular thermochemical waste-to-hydrogen production facility in California in the fourth quarter of 2020, with a pipeline of additional projects to follow in 2021. Ways2H Inc., Ways2H Inc.,
Methanol fuel cell developer and manufacturer Blue World Technologies ( earlier post ) is starting limited production—the first step in commercializing its methanol fuel cell technology. The fuel cell control unit governs the fuel cell system as well as communicates with the vehicle. Methanol fuel cell production.
Green, the Hoyt Hottel Professor in Chemical Engineering, is developing a technology that allows liquid organic hydrogen carriers (LOHCs) not only to deliver hydrogen to the trucks, but also to store the hydrogen onboard. Their findings were recently published in the ACS journal Energy and Fuels.
The US Environmental Protection Agency (EPA) announced a proposed determination that emissions of lead from aircraft that operate on leaded fuel cause or contribute to air pollution that may reasonably be anticipated to endanger public health and welfare. Jet aircraft used for commercial transport do not operate on a fuel containing lead.
DG Fuels (DGF), a provider of cellulosic drop-in sustainable aviation fuel (SAF), signed a multi-year SAF offtake agreement with Air France KLM for up to 60,408 metric tons (21 million gallons) per year from DGF’s initial plant to be located in Louisiana. Schematic of DGFuels Sustainable Aviation Fuel Process.
the strategic investment arm of South Korea’s SK Group, was part of a $50-million investment in Fulcrum BioEnergy, a US-based waste-to-fuels company. Fulcrum produce biofuel on a commercial scale by chemically converting municipal solid waste (MSW) into transportation fuels. Founded in Pleasanton, Calif.,
Fulcrum BioEnergy has selected Gary, Indiana as the location of its Centerpoint BioFuels Plant, which will convert municipal solid waste (MSW) into low-carbon, renewable transportation fuel. Once operational, the Centerpoint plant will divert and process approximately 700,000 tons of waste from the Greater Chicago area.
Haldor Topsoe and Nel ASA have entered a memorandum of understanding (MOU) with the intent to offer customers complete solution for green ammonia and methanol produced with renewable electricity. Topsoe is currently engaged in several projects to produce green hydrogen, green ammonia, eMethanol, and greenfuels.
Isolated via conventional separation techniques, asphaltenes are typically combusted for reuse as transportation fuels and/or discarded in tailing ponds and landfills. To date, efforts have been invested in developing carbon fibers, carbon electrodes, porous carbon foam/scaffolds, and carbon nanosheets from asphaltenes.
bp ventures has committed $10 million, leading the Series B investment round, in WasteFuel , a California-based biofuels company that will use proven, scalable technologies to convert bio-based municipal and agricultural waste into lower carbon fuels, such as biomethanol. billion metric tons by 2050.
Researchers at the US Department of Energy’s Pacific Northwest National Laboratory (PNNL) have developed an onboard separation system that could support increased fuel economy and lower greenhouse gas emissions as part of an octane-on-demand fuel-delivery system. Unfortunately, these engines exacerbate engine knock.
Infinium Electrofuels technology converts carbon dioxide waste and renewable power through its proprietary process to create hydrogen-based alternatives to traditional fossil-based fuels. Electrofuels are ultra-low carbon drop-in fuels that can be used in today’s infrastructure and engines without modifications or upgrades.
Brookhaven National Laboratory, and the National Renewable Energy Laboratory (NREL) will work over the next few years to bring to market high-temperature proton exchange membrane (HT-PEM) fuel cells. Artist’s concept of a heavy-duty vehicle equipped with high-temperature proton exchange membrane (HT-PEM) fuel cells.
billion Clean Fuels Fund with a call for proposals for projects that increase Canada’s capacity to produce clean fuels. The fund supports building new or expanding existing clean fuel production facilities, including hydrogen, renewable diesel, synthetic fuels, renewable natural gas and sustainable aviation fuel.
A team of scientists from LanzaTech, Northwestern University and the Department of Energy’s Oak Ridge National Laboratory have engineered a microbe to convert molecules of industrial waste gases, such as carbon dioxide and carbon monoxide, into acetone and isopropanol (IPA). —Jennifer Holmgren, CEO of LanzaTech. auto cell.
Chevron USA, a subsidiary of Chevron Corporation, announced definitive agreements to supply fuel linked to renewable natural gas for a Walmart Inc. demonstration of Cummins’s new 15-liter natural gas engine for heavy-duty trucks ( earlier post ). —Andy Walz, president of Americas Fuels & Lubricants for Chevron.
Neste and CIM, part of NOVEN Group in France, the leading independent French group of companies providing oil storage and supply services, are collaborating to enable the supply of Neste MY Sustainable Aviation Fuel into France. CIM, import terminal at Le Havre. million tons per annum by the end of 2023.
, the developer of a gasification-based process that converts waste into clean hydrogen fuel for mobility, microgrids and power generation ( earlier post ), closed an investment from Pacific6 Enterprises, led by founding partner John C.
The technologies work as a system that converts organic waste into renewable hydrogen gas for use as a biofuel. The system combines biology and electrochemistry to degrade organic waste—such as plant biomass or food waste—to produce hydrogen.
Researchers from Newcastle University in the UK have engineered Escherichia coli bacteria to capture carbon dioxide using hydrogen gas to convert it into formic acid. coli host strain was engineered for the continuous production of formic acid from H 2 and CO 2 during bacterial growth in a pressurised batch bioreactor.
HP Taxis, Prins Alternative Fuel Systems and SBL-Automotive revealed [link] of the plug-in hybrid range-extended electric LEVC TX taxi and VN5 van allowing the range extender engine to run on LPG and CNG and their renewable counterparts of biopropane and biomethane. LPG/biopropane fuel tank or CNG/biomethane fuel tank.
The US Department of Energy’s (DOE’s) Advanced Research Projects Agency - Energy (ARPA-E) will award $38 million to 12 projects that will work to reduce the impacts of light-water reactor used nuclear fuel (UNF) disposal. Most of the nation’s used fuel is stored at more than 70 reactor sites across the country. Earlier post.)
A report released this week highlights the most significant breakthroughs of the last year in the US Department of Energy’s (DOE) Co-Optimization of Fuels & Engines (Co-Optima) initiative, with details on findings that could translate into significant greenhouse gas (GHG) and tailpipe emissions reductions. Source: DOE.
Anticipating increasing desire from airlines to reduce emissions, Neste and Shell Aviation have entered into a sustainable aviation fuel (SAF) supply agreement. SAF offers the only viable alternative to fossil liquid fuels for powering commercial aircraft with an immediate potential to reduce aviation’s greenhouse gas emissions.
GTI has released a site-specific engineering design titled “ Low-Carbon Renewable Natural Gas (RNG) from Wood Wastes ”. GTI led a team of engineers and scientists to produce a blueprint for converting an existing biomass facility into an RNG production site, using the wood waste feedstock and some of the existing infrastructure.
Altalto Immingham Limited, a subsidiary of renewable fuels company Velocys and a collaboration with British Airways and Shell, has submitted a planning application to develop its site in Immingham, North East Lincolnshire, close to the Humber Estuary. million gallons US) of cleaner-burning sustainable jet and road fuel each year.
Blue World Technologies has started the series production of its methanol fuel cells, marked with the official inauguration of the 8,500 m 2 Blue Aalborg Factory. The fuel cell factory, which initially has an annual production capacity of 250,000 individual fuel cells, is located in an industrial area at the Port of Aalborg in Denmark.
The university’s Parking and Transportation Services and Cal State LA Hydrogen Research and Fueling Facility received a best practice award for sustainable transportation in the 2019 Energy Efficiency and Sustainability Best Practice Awards competition. The facility is part of the College of Engineering, Computer Science, and Technology.
In Australia, QUT researchers and Mercurius Australia are partnering on a pilot plant to prove the economic viability of turning sugarcane waste into either jet and diesel fuel or chemicals that could be used to make plastic soft drink and beer bottles. The engineering now is trying to prove the economics.
Initial life cycle assessments demonstrate either reduced carbon emissions compared with current methods of carbon black production or the use of bio-based or waste feedstock sources. Silica is an ingredient often used in tires to help improve grip and reduce fuel consumption. Non-pneumatic tire.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content