This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
One of the more promising candidates for batteries beyond the current standard of lithium-ion materials is the sodium-ion (Na-ion) battery. Na-ion is particularly attractive because of the greater abundance and lower cost of sodium compared with lithium. In addition, when cycled at high voltage (4.5
Pacific Gas and Electric Company (PG&E) and the California Energy Commission today unveiled a utility-scale sodium-sulfur battery energy storage system ( earlier post ) pilot project to better balance power needs of the electric grid. The system has a 4 megawatt capacity, and can store more than six hours of energy.
BC Hydro has selected S&C Electric Company, a renewable energy integration company, for a sodium-sulfur (NaS) battery energy storage project intended to improve service reliability for a remote mountain community in British Columbia.
A team led by researchers from the University of Alberta (Canada) Scientists has developed a hybrid sodium-ion capacitor (NIC) using active materials in both the anode and the cathode derived entirely from peanut shells—a green and highly economical waste globally generated at more than 6 million tons per year. doi: 10.1039/C4EE02986K.
The hybrid systems research team at GE Global Research has successfully demonstrated a dual battery system for an electric transit bus, pairing a high-energy density sodium metal halide battery with a high-power lithium battery. Most types of batteries today come with a trade-off between power and energy storage.
Researchers at Pacific Northwest National Laboratory (PNNL) have devised an alloying strategy that enables sodium-beta batteries to operate at significantly lower temperatures. The new electrode enables sodium-beta batteries to last longer, helps streamline their manufacturing process and reduces the risk of accidental fire.
Xcel Energy has released the preliminary results from its wind-to-battery (W2B) storage project in Minnesota, and termed the technology successful. In October 2008, Xcel began testing a one-megawatt sodium-sulfur (NaS) battery ( earlier post ) to demonstrate its ability to store wind energy and move it to the electricity grid when needed.
GE’s Energy Storage business announced $63 million in new Durathon sodium-halide battery orders since the business launched in July. The technology is unique because it can function in a variety of extreme conditions and store as much energy as lead-acid batteries twice its size while lasting up to 10 times as long.
Natron Energy , a developer of new battery cell technology based on Prussian Blue analogue electrodes and a sodium-ion electrolyte, has closed a strategic investment by Chevron Technology Ventures (CTV) to support the development of stationary energy storage systems for demand charge management at electric vehicle (EV) charging stations.
Solid-state sodium-ion batteries are safer than conventional lithium-ion batteries, which pose a risk of fire and explosions, but their performance has been too weak to offset the safety advantages. Researchers at the University of Houston have now developed an organic cathode that improves both stability and energy density.
Researchers from Ulsan National Institute of Science and Technology (UNIST) in Korea and Karlsruher Institute of Technology in Germany have developed a novel energy conversion and storage system using seawater as a cathode. Similarly, sodium has recently attracted attention as a replacement for lithium in alkali-metal-air batteries.
A team from the University of New South Wales (Australia) reports on a novel core-shell strategy leading to high and stable hydrogen absorption/desorption cycling for sodium borohydride (NaBH 4 ) under mild pressure conditions (4 MPa) in an open-access paper in the journal ACS Nano. With a high storage capacity (10.8
GE’s ecomagination.com publication reports that GE engineers have begun testing a transit bus equipped with a new hybrid energy system integrating GE’s Durathon sodium-halide battery ( earlier post ), a lithium-ion battery and a hydrogen fuel cell. Better power management also means long-term savings in operating the vehicle.
Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The estimated sodium storage up to C 6.9 Na is comparable to graphite for standard lithium ion batteries.
Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.
RAL researchers are proposing a new process for the decomposition of ammonia to release hydrogen that involves the stoichiometric decomposition and formation of sodium amide from Na metal. Indeed, high-density, affordable, and efficient hydrogen storage is one of the key steps in the realization of a hydrogen-based energy sector.
Researchers at Empa and the University of Geneva (UNIGE) have developed a prototype of a novel solid-state sodium battery with the potential to store extra energy and with improved safety. A paper on their work is published in the RSC journal Energy & Environmental Science. B 10 H 10 ) 0. —Duchêne et al.
A plot of ESOI for 7 potential grid-scale energy storage technologies. Benson from Stanford University and Stanford’s Global Climate and Energy Project (GCEP) has quantified the energetic costs of 7 different grid-scale energy storage technologies over time. Credit: Barnhart and Benson, 2013. Click to enlarge.
The study, which provides a joint industry analysis of how different types of batteries are used in different automotive applications, concludes that lead-based batteries will by necessity remain the most wide-spread energy storage system in automotive applications for the foreseeable future. Sodium-nickel chloride batteries.
John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C. The present sodium-sulfur battery operates above 300 °C. A typical Li-air battery discharges at 2.5-2.7
After years of anticipation, sodium-ion batteries are starting to deliver on their promise for energy storage. But so far, their commercialization is limited to large-scale uses such as storingenergy on the grid. Sodium-ion batteries just don't have the oomph needed for EVs and laptops.
Natron Energy, a developer of new battery cell technology based on Prussian Blue analogue electrodes and a sodium-ion electrolyte, has ( earlier post ), has been awarded a $3-million grant by the California Energy Commission (CEC) for “Advanced Energy Storage for Electric Vehicle Charging Support.”
The US Department of Energy’s (DOE’s) Advanced Research Projects Agency - Energy (ARPA-E) will award $38 million to 12 projects that will work to reduce the impacts of light-water reactor used nuclear fuel (UNF) disposal. Most of the nation’s used fuel is stored at more than 70 reactor sites across the country. Earlier post.)
The New York State Energy Research and Development Authority (NYSERDA) has awarded $250,000 to each of eight companies and research centers to develop working prototypes for a wide range of energy-storage technologies. The recipients are all members of the NY Battery and Energy Storage Technology ( NY-BEST ) Consortium.
The Advanced Research Projects Agency - Energy (ARPA-E) has awarded $3 million from its 2015 OPEN funding to a project to develop an all-solid-state sodium battery. A sodium-based battery, on the other hand, has the potential to store larger amounts of electrical energy at a significantly lower cost.
published in the ACS journal Chemical Reviews , reviews in detail four stationary storage systems considered the most promising candidates for electrochemical energy storage: vanadium redox flow; sodium-beta alumina membrane; lithium-ion; and lead-carbon batteries. In their study, Yang et al. EES can be employed for services.
nm, average) of iron pyrite (FeS 2 ) nanoparticles are advantageous to sustain reversible conversion reactions in sodium ion and lithium ion batteries. In the paper, they reported reversible capacities of more than 500 and 600 mAh/g for sodium and lithium storage for ultrafine nanoparticles, along with improved cycling and rate capability.
The US Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) has selected 19 new projects to receive a total of $43 million to develop breakthrough energy storage technologies and support promising small businesses. military at forward operating bases in remote areas —Secretary of Energy Steven Chu.
The US Department of Energy is awarding $620 million for projects around the country to demonstrate advanced Smart Grid technologies and integrated systems. The selected projects include advanced battery systems (including flow batteries), flywheels, and compressed air energy systems. Pecan Street Project (TX).
Scientists at the US Department of Energy’s Pacific Northwest National Laboratory (PNNL) report new findings about how to make a single-crystal, nickel-rich cathode hardier and more efficient. Researchers are working on ways to store more energy in the cathode materials by increasing nickel content.
Yabuuchi has showed, among other things, how new battery materials can improve the efficiency of lithium-ion and sodium-ion batteries. The “Science Award Electrochemistry” aims to promote outstanding scientific and engineering achievements and provide an incentive for the development of high-performance energystores.
Researchers within the RS2E network on electrochemical energy storage (Réseau sur le stockage électrochimique de l’énergie) in France have developed the first sodium-ion battery in an 18650 format. The main advantage of the prototype is that it relies on sodium, an element far more abundant and less costly than lithium.
Schematic representation of the working principle behind a complete cycle of the desalination battery, showing how energy extraction can be accomplished: step 1, desalination; step 2, removal of the desalinated water and inlet of seawater; step 3, discharge of Na + and Cl ? in seawater; step 4, exchange to new seawater. Click to enlarge.
However, there still remain some major hurdles to the development of Ca-based batteries, one of them being a lack of knowledge on suitable cathode materials that can efficiently store and release Ca in a reversible manner. Haesun Park, Christopher J. 202101698.
The New York State Energy Research and Development Authority (NYSERDA) will award $8 million to help develop or commercialize 19 advanced energy storage projects. Integrating battery and ultra-capacitors on a common power circuit serving two renewable-energy generation sources. Murray, Jr., million in funding. General Electric.
The sodium alanate material used to store the hydrogen resides within the tubes. Researchers at Sandia National Laboratories have successfully designed and demonstrated key features of a hydrogen storage system that utilizes a complex metal hydride material—sodium alanate. Photo by Randy Wong) Click to enlarge. Earlier post.).
The Skyblade 360 fuel cell system developed by HES and DSO is extremely lightweight in comparison to lithium batteries that typically power this aircraft, and it is also extremely compact: its 1L fuel cartridge holds 1000 Wh of usable energy. It took HES several years to achieve this performance.
Initial studies revealed that antimony could be suitable for both rechargeable lithium- and sodium-ion batteries because it is able to store both kinds of ions. Sodium is regarded as a possible low-cost alternative to lithium as it is much more naturally abundant and its reserves are more evenly distributed on Earth.
BASF announced the winners of the BASF Energy Contest at the “Creator Space Summit” in Ludwigshafen. The research group of Professor Xiangwu Zhang from North Carolina State University presents the concept of high-performance sodium-ion batteries that applies special electrode preparation methods.
In trials, GE’s sodium metal halide Durathon batteries ( earlier post ) have successfully powered GE Mining’s Scoop, an underground vehicle that transports mining materials, at Coal River Energy, LLC in Alum Creek, West Virginia. Sodium-metal halide cell basic chemistry. Click to enlarge.
To do that, the glass granulate is initially segregated by type for clear verification of source and color and then stored in bins. Saint-Gobain Glass then mixes the recyclate with, among other things, quartz sand, sodium carbonate, and chalk—the basic components of glass. from a typical day’s tonnage.
It is a key milestone in the deployment of our strategic roadmap which aims at positioning Eramet as a reference player in metals for the energy transition. Developed by Eramet in liaison with IFPEN (the French Institute of Petroleum and New Energies) and Seprosys, this works like a sponge, capturing the lithium contained in the brine.
The Jadar project would support the evolution of Rio Tinto—one of the world’s largest miners—into a chemical producer to make battery-grade lithium carbonate, a critical mineral used in large-scale batteries for electric vehicles and storing renewable energy.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content