Remove Energy Remove Recharge Remove Sodium
article thumbnail

PNNL team develops sodium-manganese oxide electrodes for sodium-ion rechargeable batteries

Green Car Congress

The resulting improved electrical capacity and recharging lifetime of the nanowires. low-cost Na-ion battery system for upcoming power and energy. To connect intermittent renewable energy sources (i.e., Lithium-ion rechargeable batteries perform well, but are too expensive for widespread use on the grid. Earlier post.)

Sodium 218
article thumbnail

PNNL team develops electrolyte for high-voltage sodium-ion battery with extended longevity

Green Car Congress

Cheap and abundant, sodium is a promising candidate for new battery technology. However, the limited performance of sodium-ion batteries has hindered large-scale application. A paper on the work appears in Nature Energy. Sodium-ion batteries (NIBs) have attracted worldwide attention for next-generation energy storage systems.

Sodium 334
article thumbnail

Researchers develop rechargeable hybrid-seawater fuel cell; highly energy density, stable cycling

Green Car Congress

Researchers from Ulsan National Institute of Science and Technology (UNIST) in Korea and Karlsruher Institute of Technology in Germany have developed a novel energy conversion and storage system using seawater as a cathode. Similarly, sodium has recently attracted attention as a replacement for lithium in alkali-metal-air batteries.

Recharge 285
article thumbnail

New high energy, highly stable cathode for sodium-ion batteries

Green Car Congress

Researchers in South Korea have developed a novel high-energy cathode material, Na 1.5 F 0.7 , for sodium-ion (Na-ion) batteries (NIBs). This new material provides an energy density of 600 Wh kg –1 , the highest value among Na-ion cathodes. Ragone plot for the new Na 1.5 cathode and other cathode materials for NIBs. Batteries'

Sodium 292
article thumbnail

BASF investigating sodium-air batteries as alternative to Li-air; patent application filed with USPTO

Green Car Congress

In a paper in Nature Materials , a team of researchers from BASF SE and Justus-Liebig-Universität Gießen report on the performance of a sodium-air (sodium superoxide) cell. Their work, they suggest, demonstrates that substitution of lithium by sodium may offer an unexpected route towards rechargeable metal–air batteries.

Sodium 291
article thumbnail

Samsung researchers enhance energy density of Na-ion cathode materials by incorporating aluminum

Green Car Congress

Researchers from the Samsung Advanced Institute of Technology report enhancing the energy density of manganese oxide (Na x MnO 2 ) cathode materials for sodium rechargeable batteries by incorporating aluminum. O 2 , suggest a strategy for achieving sodium rechargeable batteries with high energy density and stability.

Li-ion 294
article thumbnail

New solid-electrolyte interphase may boost prospects for rechargeable Li-metal batteries

Green Car Congress

Rechargeable lithium metal batteries with increased energy density, performance, and safety may be possible with a newly-developed, solid-electrolyte interphase (SEI), according to Penn State researchers. The same approach was also applied to design stable SEI layers for sodium and zinc anodes. Credit: Donghai Wang,Penn State.

Recharge 305