This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Minneapolis-based Xcel Energy will work with Idaho National Laboratory to demonstrate a system that uses a nuclear plant’s steam and electricity to split water. It builds on a project launched last year to demonstrate how hydrogen production facilities could be installed at operating nuclear power plants. Earlier post.)
A study by a team of researchers from Technische Universität Berlin (TUB) and Fritz-Haber-Institut der Max-Planck-Gesellschaft has found that direct seawater splitting for hydrogen production has substantial drawbacks compared to conventional water splitting and offers almost no advantage. Diess et al.
Researchers in Spain have developed hydrogen production without contact electrodes via water electrolysis mediated by the microwave-triggered redox activation of solid-state ionic materials at low temperatures ( Nature Energy. In thermochemical cycles, the highly energy-demanding splitting of water molecules (?H
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4. The conversion rate reaches 32.9 ± 1.38
Researchers at Uppsala University have developed photocatalytic composite polymer nanoparticles (“polymer dots”) that show promising performance and stability for the production of hydrogen from water and sunlight. Since polymer dots (Pdots) are so tiny, they are evenly distributed in water. 0c12654.
Electrolytic hydrogen production powered by renewable energy is seen as an environmentally friendly means to ameliorate global climate and energy problems. Both half reactions of water electrolysis—hydrogen and oxygen evolution—are unfortunately slow and require a lot of power. Zhang, S.L., and Lou, X.W.
Japan’s New Energy and Industrial Technology Development Organization (NEDO), Toshiba Energy Systems & Solutions Corporation (Toshiba ESS), Tohoku Electric Power Co., Japan’s New Energy and Industrial Technology Development Organization (NEDO), Toshiba Energy Systems & Solutions Corporation (Toshiba ESS), Tohoku Electric Power Co.,
Energy Vault, a company developing grid-scale gravity energy storage solutions, has entered into an energy storage system agreement with DG Fuels, a developer of renewable hydrogen and biogenic-based, synthetic sustainable aviation fuel (SAF) and diesel fuel. Under the terms of the agreement, Energy Vault agreed to provide 1.6
AW-Energy Oy is entering the commercial hydrogen market by introducing a combined WaveRoller and HydrogenHub process for the production of green hydrogen. In AW-Energy’s concept, wave energy complements solar power production to enable large-scale green hydrogen. —Christopher Ridgewell, CEO of AW-Energy Oy.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —senior author Professor Erwin Reisner.
The US Department of Energy (DOE) awarded $22.1 million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. This funding opportunity is administered by DOE’s Office of Nuclear Energy (NE).
A team led by researchers at Tokyo Institute of Technology (Tokyo Tech) have discovered a new bimetallic electrocatalyst for the oxygen evolution reaction (OER) in electrochemical water splitting: CaFe 2 O 4. The study is published in the journal ACS Applied Energy Materials. 0c02710.
Photoelectrochemical (PEC) water splitting based on solar energy is one promising approach for the production of green hydrogen. However, its widespread application is limited by a lack of efficient photoanodes for catalyzing the rate-limiting oxygen evolution reaction (OER), an important reaction in PEC water splitting.
Heliogen and Bloom Energy have successfully demonstrated the production of green hydrogen by integrating the companies’ technologies: Heliogen’s concentrated solar energy system and the Bloom Electrolyzer. By using less electricity, hydrogen production is more economical and accelerates adoption. Source: Heliogen.
Utilization of renewable solar energy is crucial for addressing the global energy and environmental concerns and achieving sustainable development. In this regard, photocatalytic water splitting has attracted significant interest as a cost-effective means to convert sustainable solar energy into valuable chemicals.
Ultra Safe Nuclear Corporation (USNC), a US-based vertical integrator of nuclear technologies and services, Hyundai Engineering and SK E&C are teaming up to conduct research and development for carbon-free hydrogen production. It is also participating in a government-led green hydrogen production demonstration project.
The Sparc Green Hydrogen process combines concentrated solar (CS) with photocatalytic water splitting. This testing has shown a hydrogen production and efficiency benefit from exposing certain photocatalyst materials to concentrated light and heat. one level closer to a commercially deployable product.
In an open access paper published in Nature Communications , researchers from the University of Wollongong in Australia report that their capillary-fed electrolysis cell demonstrates water electrolysis performance exceeding commercial electrolysis cells, with a cell voltage at 0.5 2 and 85 °C of only 1.51 kWh/kg hydrogen (vs. Hodges et al.
Researchers from the Chinese Academy of Sciences and Tsinghua University have used a gallium, indium, tin and bismuth alloy to generate hydrogen, when placed in contact with an aluminum plate immersed in water. An open-access paper on their work appears in the Journal of Renewable and Sustainable Energy , from AIP Publishing.
Conventional water electrolysis for the production of hydrogen faces technological challenges to improve the efficiency of the water-splitting reaction for the sluggish oxygen evolution reaction (OER). An open-access paper on their work is published in the RSC journal Energy & Environmental Science.
The US Department of Energy (DOE) released a new report, Hybrid Energy Systems: Opportunities for Coordinated Research , highlighting innovative opportunities to spur joint research on hybrid energy systems (HES). HES can also be configured to provide various electric and nonelectric products (e.g.,
A Siemens Energy-led consortium has begun work in Newcastle, UK on a new £3.5 This innovative green ammonia cracker could be a game-changer for scaling up the green hydrogen industry – an important step to drive the energy transition. Siemens Energy has proven experience of innovation with ammonia. million (US$4.24
In a review paper published in the journal ChemSusChem , researchers from Australia’s CSIRO conclude that the combination of synthetic biology and materials chemistry will provide many viable options to allow the use of nitrogenase for energy applications, such as the production of green ammonia for use as a preferred liquid carrier for hydrogen.
Canada investing $20M in Terrestrial Energy to support development of Integral Molten Salt SMR. Navdeep Bains, announced a $20 million investment in Terrestrial Energy to accelerate development of the company’s Integral Molten Salt Reactor (IMSR) power plant. In addition, Terrestrial Energy is spending at least another $91.5
China-based Dongfang Electric Corporation (DEC) reported successful testing of non-desalinated seawater electrolysis technology for hydrogen production powered by offshore wind. The floating hydrogen production platform Dongfu One is sited in an offshore wind farm in East China’s Fujian province. —Xie et al.
Toyota has commissioned Victoria’s first commercial-grade permanent hydrogen production, storage and refuelling facility at its former manufacturing site at Altona in Melbourne’s west. Sustainably produced hydrogen is the core element to fuel vehicles like the Toyota Mirai FCEV.
Researchers at the University of Melbourne (Australia) have demonstrated a method of direct hydrogen production from air— in situ capture of freshwater from the atmosphere using hygroscopic electrolyte and subsequent electrolysis powered by solar or wind with a current density up to 574 mA cm ?2.
Researchers at Monash University in Australia have conducted a lifecycle analysis and net energy analysis (LCA/NEA) of a hypothetical large-scale solar-electrolysis plant for the production of green hydrogen. The open-access paper on the study is published in the RSC journal Energy & Environmental Science. Palmer et al.
Canada-based Aurora Hydrogen, a company developing emission-free hydrogen production technology, has raised $10 million in Series A funding led by Energy Innovation Capital. There is an accompanying need to develop new low-cost and low-carbon technologies for hydrogen production.
Toshiba Energy Systems & Solutions Corporation (Toshiba ESS) announced that its hydrogen-based autonomous energy supply system H2One, which Toshiba ESS delivered and installed on the rooftop of Toranomon Hills Business Tower (Minato-ku, Tokyo), has started full-scale operation with the opening of commercial facilities.
Engineers at the University of Pittsburgh Swanson School of Engineering are using membrane distillation technology to enable drillers to filter and reuse the produced water in the oil and gas industry, in agriculture, and other beneficial uses. The method is already being tested in Texas, North Dakota, and most recently in New Stanton, Pa.
The researchers combined a copper electrocatalyst with an ionomer [polymers that conduct ions and water] assembly that intersperses sulfonate-lined paths for the H 2 O with fluorocarbon channels for the CO 2. amperes per square centimeter at 45% cathodic energy efficiency. García de Arquer et al. —García de Arquer et al.
AKASOL AG is introducing its third generation of battery systems manufactured in series production. The new AKASystem 9 AKM 150 CYC has the highest energy density available on the market, according to AKASOL, and is thus especially suitable for fully electric long-distance applications such as coaches or trucks.
The California Energy Commission (CEC) adopted a report establishing offshore wind goals and moving the state one step closer to development of the clean energy resource off California’s coast. Additional transmission infrastructure will be needed to deliver offshore wind energy from this region to the grid.
A team of researchers led by Loretta Roberson, associate scientist at the Marine Biological Laboratory, Woods Hole, has installed the first seaweed farm in Puerto Rico and US tropical waters. Puerto Rico has stable warm temperatures and ample sunlight year-round, as well as a wide range of exposure to prevailing winds and waves.
As water-splitting technologies improve, often using porous electrode materials to provide greater surface areas for electrochemical reactions, their efficiency is often limited by the formation of bubbles that can block or clog the reactive surfaces. As a result, there were substantial changes of the transport overpotential. 2021.02.015.
European Energy , a Danish developer and operator of green energy projects, has ordered a 50 MW electrolyzer from Siemens Energy for use in developing the first large-scale commercial e-Methanol production facility. Start of commercial methanol production is planned for second half of 2023.
Topsoe intends to construct the world’s largest and most advanced industrial-scale electrolyzer production plant. The plant will produce high-temperature Solid Oxide Electrolyzer Cells (SOEC)—which have a higher energy efficiency that competing technologies.
Starfire Energy, a Colorado-based developer of modular chemical plants for the carbon-free production of ammonia and hydrogen, has closed a major funding round. Proceeds will be used to advance the development of commercial-scale applications to decarbonize ammonia production and unlock its potential as a zero-carbon energy carrier.
Perovskite materials may hold the potential to play an important role in a process to produce hydrogen in a renewable manner, according to an analysis from scientists at the National Renewable Energy Laboratory (NREL). Electrolysis needs electricity to split water into hydrogen and oxygen. —Zhiwen Ma, a senior engineer at NREL.
The Yongsoo wave energy power plant, installed at berth 1 in the Korean Institute KRISO -Wave Energy Test Site (WETS), is preparing to produce green hydrogen from next year, according to a report from Ocean Energy Systems. The water depth ranges from 15 meters to 60 meters and is constructed to test different types of devices.
Leclanché SA reported that year-long testing of its 60 Ah G/NMC battery cells has shown them to be both high energy density and high cycle life—critical characteristics for a wide range of automotive and e-transportation energy storage solutions. 1C/1C continuous for a 100% DoD at room temperature conditions.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content