Remove Energy Remove Ni-Li Remove Powered Remove Recharge
article thumbnail

Navy researchers boost performance of Ni-Zn cells commensurate with Li-ion; safer alternative

Green Car Congress

With 3-D Zn, the battery provides an energy content and rechargeability that rival lithium-ion batteries while avoiding the safety issues that continue to plague lithium. The long-standing limitation that has prevented implementing Zn in next-generation batteries lies in its poor rechargeability due to dendrite formation.

Ni-Li 170
article thumbnail

Hybrid biomass flow battery stores electricity and produces valuable chemicals at the same time

Green Car Congress

Rechargeable batteries store electricity in their electrode materials, while redox flow batteries use chemicals stored in tanks attached to the electrodes. A rechargeable biomass battery was designed to integrate electricity storage/generation and electrosynthesis of useful chemicals from furfural in one system.

Store 368
article thumbnail

Researchers at Japans AIST Propose a Rechargeable Ni-Li Battery with Hybrid Electrolyte; Ultrahigh Theoretical Energy Density Plus High Power Potential

Green Car Congress

Key components, cell voltage, and cell capacity of Li-ion battery (a), Ni-MH battery (b), and the proposed Ni-Li battery (c). Credit: ACS, Li et al. The proposed Ni-Li battery offers both a high cell voltage (3.49 Click to enlarge. V due to the limitation of aqueous electrolyte. Earlier post.].

Ni-Li 230
article thumbnail

Hanyang/BMW team develops high-energy density Li-ion battery with carbon-nanotube-Si composite anode and NCM concentration gradient cathode

Green Car Congress

Researchers from Hanyang University in Korea and the BMW Group have developed a new fully operational, practical Li-ion rechargeable battery combining high energy density with excellent cycle life. A report on their work is published in the RSC journal Energy & Environmental Science. Energy density of different LIBs.

Li-ion 210
article thumbnail

University of Sydney team advances rechargeable zinc-air batteries with bimetallic oxide–graphene hybrid electrocatalyst

Green Car Congress

University of Sydney team advances rechargeable zinc-air batteries with bimetallic oxide–graphene hybrid electrocatalyst. Zinc-air batteries are powered by zinc metal and oxygen from the air. Zinc-air batteries are powered by zinc metal and oxygen from the air. Other two amorphous bimetallic, Ni 0.4 O x and Ni 0.33

Zinc Air 150
article thumbnail

AIST researchers synthesize new class of high-voltage, high-capacity cathode materials for Li-ion batteries

Green Car Congress

Researchers at Japan’s National Institute of Advanced Industrial Science and Technology (AIST) have developed a new class of contenders for high-voltage and high-capacity Li-ion cathode materials with the composition Na x Li 0.7-x x Ni 1-y Mn y O 2 (0.03. One of the compositions—Na 0.093 Li 0.57 However, O3-Li 0.7

Li-ion 150
article thumbnail

RIKEN team develops high-performance lithium-iodine battery system with higher energy density than conventional Li-ion

Green Car Congress

The working concept of I3 – /I – redox reaction in the aqueous Li-I 2 battery. A team from Japan’s RIKEN, led by Hye Ryung Byon, has developed a lithium-iodine (Li-I 2 ) battery system with a significantly higher energy density than conventional lithium-ion batteries. Zhao et al. Click to enlarge. kWh kg -1 cell (1.0

Li-ion 255