This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. under concentrated solar light illumination.
Scientists at Tokyo Institute of Technology (Tokyo Tech) have demonstrated the first visible-light photoelectrochemical system for water splitting using TiO 2 enhanced with cobalt. The proposed approach is simple and represents a stepping stone in the quest to achieve affordable water splitting to produce hydrogen.
Minneapolis-based Xcel Energy will work with Idaho National Laboratory to demonstrate a system that uses a nuclear plant’s steam and electricity to split water. This is a game-changer for both nuclear energy and carbon-free hydrogen production for numerous industries. Earlier post.) Prairie Island.
Scientists at Tokyo Institute of Technology (Tokyo Tech) have developed a hybrid material constructed from a metal oxide nanosheet and a light-absorbing molecule for splitting water molecules (H 2 O) to obtain hydrogen (H 2 ) under sunlight. Adopted with permission. Copyright 2020, American Chemical Society. 0c02053.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. Computerized tomography of a MOFC, showing buildup of TiO 2 (light blue particles) in the triangular channels. Zepler Institute, University of Southampton.
Researchers at Uppsala University have developed photocatalytic composite polymer nanoparticles (“polymer dots”) that show promising performance and stability for the production of hydrogen from water and sunlight. Since polymer dots (Pdots) are so tiny, they are evenly distributed in water. 0c12654.
Photoelectrochemical (PEC) water splitting based on solar energy is one promising approach for the production of green hydrogen. However, its widespread application is limited by a lack of efficient photoanodes for catalyzing the rate-limiting oxygen evolution reaction (OER), an important reaction in PEC water splitting.
The Honda Smart Home US integrates a number of technologies, and is managed by Honda’s Home Energy Management System (HEMS). The home’s occupant will be able to use less than half of the energy of a similarly sized new home in the Davis area for heating, cooling and lighting. Click to enlarge. Photo by Dorian Toy.
The Sparc Green Hydrogen process combines concentrated solar (CS) with photocatalytic water splitting. This testing has shown a hydrogen production and efficiency benefit from exposing certain photocatalyst materials to concentrated light and heat.
Researchers in Israel have designed a separate-cell photoelectrochemical (PEC) water-splitting system with decoupled hydrogen and oxygen cells for centralized hydrogen production. Photoelectrochemical Water Splitting Cell Architectures. (A) A paper describing their system is publishedin the journal Joule. —Landman et al.
The nanostructured photoelectrode results in spontaneous hydrogen evolution from water without any external bias applied with a faradaic efficiency of 30% and excellent stability. A promising way of storing solar energy is via chemical fuels, in particular hydrogen as it is considered as a future energy carrier.
The Dutch Institute for Fundamental Energy Research ( DIFFER ) is partnering with Toyota Motor Europe (TME) to develop a device that absorbs water vapor, and splits it into hydrogen and oxygen directly using solar energy. One of these sustainable fuels is hydrogen, which can be used to store renewable energy.
By using light-activated quantum dots to fire particular enzymes within microbial cells, the researchers were able to create “living factories” that eat CO 2 and convert it into products such as biodegradable plastic, gasoline, ammonia and biodiesel. Therefore, these resting cells function as nano-microbial factories powered by light.
Researchers from Trinity College Dublin have shed new light on the formation mechanisms of a rare earth-bearing mineral that is in increasingly high demand across the globe for its use in the green energy and tech industries. Vegetation appears red, grassland is light brown, rocks are black, and water surfaces are green.
A research team led by Daegu Gyeongbuk Institute Of Science And Technology (DGIST) Professor Jong-Sung Yu in Korea, with colleagues at UC Berkeley and Xi’an Jiaotong University in China, has successfully developed a new catalyst synthesis method that can efficiently decompose water into oxygen and hydrogen using solar light.
Now, a study by researchers at the US Department of Energy (DOE) Center for Advanced Bioenergy and Bioproducts Innovation (CABBI) has found that energy sorghum ( Sorghum bicolor ) behaves more like miscanthus in the way it efficiently captures light and uses water to produce abundant biomass.
Producing aluminum is extremely energy-intensive. The aluminum produced using solar power is processed in the light metal foundry at BMW Group Plant Landshut to manufacture body and drive train components, including those needed for electric drive trains. Aluminum is light, strong and infinitely recyclable.
Researchers from the US Department of Energy’s (DOE) Argonne National Laboratory have combined two membrane-bound protein complexes to perform a complete conversion of water molecules to hydrogen and oxygen. An open-access paper describing their work is published in the journal Chemical Science. —Utschig et al.
Bosch is starting volume production of a new drive unit consisting of an electric motor and an integrated inverter for light commercial vehicles. By embedding the electric drive module in the vehicles’ existing water-cooling circuit, an oil-based cooling circuit is no longer necessary.
The US Department of Energy (DOE) awarded $22.1 million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. This funding opportunity is administered by DOE’s Office of Nuclear Energy (NE).
Researchers from the University of North Carolina have synthesized high-photovoltage multijunction Si nanowires (SiNWs) that are co-functionalized to split water catalytically. When integrated with the co-catalysts and suspended in water, these light-activated nanoreactors produced hydrogen gas under visible and infrared light.
A research group led by Associate Professor Takashi Tachikawa of Kobe University’s Molecular Photoscience Research Center has developed a strategy that greatly increases the amount of hydrogen produced from sunlight and water using hematite (??Fe Mesocrystal photoanode formation and photochemical water splitting characteristics.
The California Sustainable Energy Entrepreneur Development (CalSEED) program announced that the fourth cohort of innovative clean energy concepts has been approved by the California Energy Commission (CEC); 28 companies out of 212 were selected to receive grants of $150,000 each. the cost of energy storage?by technology?that
A new study, led by academics at St John’s College, University of Cambridge, has used semi-artificial photosynthesis to explore new ways to produce and store solar energy. They used natural sunlight to convert water into hydrogen and oxygen using a mixture of biological components and manmade technologies. —Katarzyna Sokó?,
Using a hematite photocatalyst, a team led by researchers from Kobe University has succeeded in producing both hydrogen gas and hydrogen peroxide at the same time from sunlight and water. Hydrogen has gained attention as one of the possible next generation energy sources. under 600nm). Tachikawa et al.
Utilization of renewable solar energy is crucial for addressing the global energy and environmental concerns and achieving sustainable development. In this regard, photocatalytic water splitting has attracted significant interest as a cost-effective means to convert sustainable solar energy into valuable chemicals.
The new system mimics a natural chloroplast to convert carbon dioxide in water into methane, very efficiently using light. Photosynthesis is the process by which chloroplasts in plants and some organisms use sunlight, water and carbon dioxide to create food or energy.
Dow and X-Energy Reactor Company entered into a joint development agreement (JDA) to demonstrate the first grid-scale advanced nuclear reactor for an industrial site in North America. X-energy manufactures its own proprietary version (TRISO-X) to ensure supply and quality control. Earlier post.)
With existing and forthcoming emissions mandates, DANNAR and Nuvera would be able to meet the needs of organizations and industries seeking clean energy options for mobility. accommodates all standard Caterpillar, Bobcat or John Deere attachments and is submersible in up to four feet of water. The DANNAR 4.00
A123 Systems LLC, a developer and manufacturer of advanced lithium-ion batteries and systems, has acquired Leyden Energy’s intellectual property in battery materials covering lithium titanate (LTO) and non-flammable electrolyte (Li-imide) developments for an undisclosed amount. Earlier post.)
A paper on the work appears in ACS Energy Letters. An illustration of the light-powered, one-step remediation process for hydrogen sulfide gas made possible by a gold photocatalyst created at Rice University. These plasmonic reactions create “hot carriers,” short-lived, high-energy electrons that can drive catalysis. 2c01755.
A new way of anchoring individual iridium atoms to the surface of a catalyst significantly increased its efficiency in splitting water molecules, scientists from the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University reported in an open-access paper in Proceedings of the National Academy of Sciences (PNAS). …we
A team of scientists at the University of Cambridge has reported the light-driven photoreforming of cellulose, hemicellulose and lignin to H 2 using semiconducting cadmium sulfide quantum dots in alkaline aqueous solution. A paper on their work is published in the journal Nature Energy.
Scientists from the US Department of Energy’s National Renewable Energy Laboratory (NREL) and Lawrence Berkeley National Laboratory (Berkeley Lab) are providing researchers with a guide to how best to measure the efficiency of producing hydrogen directly from solar power. Photoelectrodes have demonstrated efficiencies from 10% to 20%.
Shipping major CMA CGM Group is creating a Special Fund for Energies to accelerate its energy transition and achieve net-zero carbon by 2050. It is committed to enabling these facilities to generate enough carbon-free electricity (wind, solar, biomass-fueled, hydrogen-fueled) to become energy self-sufficient.
The US Department of Energy (DOE) today announced $175 million for 68 research and development projects aimed at developing novel advanced energy technologies. Led by DOE’s Advanced Research Projects Agency-Energy (ARPA-E), the OPEN 2021 program prioritizes funding high-impact, high-risk technologies that support novel approaches.
At the time, about a decade ago, I was helping to refine a system for fabricating chips using extreme ultraviolet (EUV) light. To produce EUV light, we would focus an intense laser pulse onto 30-micrometer-wide droplets of tin flying through a chamber filled with low-density hydrogen.
The conversion reaction also produces light olefins—ethylene, propylene, and butenes—totalling a yield of 8.7%. The second, direct route is generally recognized as being more economical and environmentally acceptable as it involves fewer chemical process steps, and the overall energy consumption for the entire process is lower.
While there is global potential to generate renewable energy at costs already competitive with fossil fuels, a means of storing and transporting this energy at a very large scale is a roadblock to large-scale investment, development and deployment. Modern H-B plants produce ammonia at an energy cost of at least 8 MWh tonne -1.
Researchers at Monash University in Australia have conducted a lifecycle analysis and net energy analysis (LCA/NEA) of a hypothetical large-scale solar-electrolysis plant for the production of green hydrogen. The open-access paper on the study is published in the RSC journal Energy & Environmental Science. Palmer et al.
The US Department of Energy’s (DOE’s) Advanced Research Projects Agency - Energy (ARPA-E) will award $38 million to 12 projects that will work to reduce the impacts of light-water reactor used nuclear fuel (UNF) disposal. Earlier post.)
The researchers’ findings, which they recently reported in the journal Nature Energy , reveal how the device degrades with use, then demonstrate how to mitigate it. Electron microscopy experiments at the Molecular Foundry confirmed that cuprous oxide quickly oxidizes or corrodes within minutes of exposure to light and water.
ICO is a key asset in delivering Jervois’ strategy to become a leading independent cobalt and nickel company providing metals and minerals for the world’s energy transition through a western supply chain. The deposits are unusually rich in Co, Cu, Fe, As, Au, B, Bi and light rare earths, but low in Ni (relative to Co), Ag, Pb, and Zn.
The US Department of Energy (DOE) plans to provide up to $100 million over five years for research on artificial photosynthesis for the production of fuels from sunlight. ( Plants use photosynthesis to convert energy from the sun into energy-rich chemical fuels using water and carbon dioxide.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content