This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Minneapolis-based Xcel Energy will work with Idaho National Laboratory to demonstrate a system that uses a nuclear plant’s steam and electricity to split water. The resulting hydrogen will initially be used at the power plant, but it could eventually be sold to other industries. Earlier post.) Prairie Island.
AW-Energy Oy is entering the commercial hydrogen market by introducing a combined WaveRoller and HydrogenHub process for the production of green hydrogen. In AW-Energy’s concept, wave energy complements solar power production to enable large-scale green hydrogen. —Christopher Ridgewell.
This award marks the first Advanced Class Gas Turbines in the industry specifically designed and purchased as part of a comprehensive plan to sequentially transition from coal, to natural gas and finally to renewable hydrogen fuel, and creates a roadmap for the global industry to follow. MHPS gas turbines have more than 3.5 and Hitachi, Ltd.
Toshiba Energy Systems & Solutions Corporation (Toshiba ESS) announced that its hydrogen-based autonomous energy supply system H2One, which Toshiba ESS delivered and installed on the rooftop of Toranomon Hills Business Tower (Minato-ku, Tokyo), has started full-scale operation with the opening of commercial facilities.
A Siemens Energy-led consortium has begun work in Newcastle, UK on a new £3.5 million) ammonia cracker prototype designed to produce green hydrogen at industrial scale. The prototype will use ammonia to deliver 200kg of hydrogen a day—enough to power around 5-10 hydrogen fuel cell-electric buses. million (US$4.24
Researchers at the University of Ontario Institute of Technology are developing a new method to dissociate water vapor into hydrogen gas by microwave-generated plasma (plasmolysis). A) An experimental setup for full microwave hydrogen production and (b) Schematic of the plasma reactor placed inside the microwave. Chehade et al.
A study by a team of researchers from Technische Universität Berlin (TUB) and Fritz-Haber-Institut der Max-Planck-Gesellschaft has found that direct seawater splitting for hydrogen production has substantial drawbacks compared to conventional water splitting and offers almost no advantage.
Japan’s New Energy and Industrial Technology Development Organization (NEDO), Toshiba Energy Systems & Solutions Corporation (Toshiba ESS), Tohoku Electric Power Co., Japan’s New Energy and Industrial Technology Development Organization (NEDO), Toshiba Energy Systems & Solutions Corporation (Toshiba ESS), Tohoku Electric Power Co.,
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. The microstructured optical fiber canes (MOFCs) with photocatalyst generate hydrogen that could power a wide range of sustainable applications.
Siemens Energy and Siemens Mobility have signed a Memorandum of Understanding (MoU) jointly to develop and offer hydrogen systems for trains. Since its spin-off and public listing on 28 September, Siemens Energy is no longer part of the Siemens Group. Siemens AG is the largest shareholder of Siemens Energy AG.
The Sparc Green Hydrogen process combines concentrated solar (CS) with photocatalytic water splitting. This testing has shown a hydrogen production and efficiency benefit from exposing certain photocatalyst materials to concentrated light and heat. A second round of testing later in the year will be considered pending results.
In an open access paper published in Nature Communications , researchers from the University of Wollongong in Australia report that their capillary-fed electrolysis cell demonstrates water electrolysis performance exceeding commercial electrolysis cells, with a cell voltage at 0.5 kWh/kg hydrogen (vs. 2 and 85 °C of only 1.51
The Yongsoo wave energy power plant, installed at berth 1 in the Korean Institute KRISO -Wave Energy Test Site (WETS), is preparing to produce green hydrogen from next year, according to a report from Ocean Energy Systems. The Yongsoo plant is a 500 kW fixed oscillating water column (OWC)-type wave energy converter.
Africa can produce 50 million tons of green hydrogen a year by 2035, according to a new study by the European Investment Bank (EIB), International Solar Alliance and the African Union, with the support of the Government of Mauritania, HyDeal and UCLG Africa. This is equivalent to energy costs of US$60 a barrel.
C-Job Naval Architects has designed a new class of liquid hydrogen tanker in partnership with LH2 Europe. LH2 Europe will use the abundant renewable electricity in Scotland to produce green hydrogen and market it at a competitive price with diesel. Hydrogen will be essential to the future of energy. Vessel specifications.
Korea’s Ulsan National Institute of Science and Technology (UNIST) have developed a novel process for the production of hydrogen using various types of biomass, including lignin, as an efficient alternative to water oxidation as an electron source. Conventionally, water is considered a cheap and clean source of electrons; 2H 2 O ?
EPFL researchers have built a pilot-scale solar reactor that produces usable heat and oxygen, in addition to generating hydrogen with unprecedented efficiency for its size. This is the first system-level demonstration of solar hydrogen generation. Holmes-Gentle et al.
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4. Song et al.
Essen-based energy company STEAG, Duisburg-based steel producer thyssenkrupp Steel and Dortmund-based thyssenkrupp Uhde Chlorine Engineers, specializing in electrolysis technology, are working on a joint feasibility study. They endorse the development of a hydrogen economy and infrastructure in Germany and in Europe. Hans Blossey.
Using a hematite photocatalyst, a team led by researchers from Kobe University has succeeded in producing both hydrogen gas and hydrogen peroxide at the same time from sunlight and water. Hydrogen has gained attention as one of the possible next generation energy sources. under 600nm). Tachikawa et al.
The US Department of Energy (DOE) awarded $22.1 million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. This funding opportunity is administered by DOE’s Office of Nuclear Energy (NE).
thyssenkrupp’s proprietary water electrolysis technology for the production of. green hydrogen meets the requirements for participation in the primary control reserve market. Our plants are thus making a significant contribution to ensuring both a stable power supply and the cost-effectiveness of green hydrogen.
Electrolytic hydrogen production powered by renewable energy is seen as an environmentally friendly means to ameliorate global climate and energy problems. Both half reactions of water electrolysis—hydrogen and oxygen evolution—are unfortunately slow and require a lot of power. Zhang, S.L.,
The technology group Wärtsilä is developing the combustion process in its gas engines to enable them to burn 100% hydrogen fuel. Wärtsilä has researched hydrogen as a fuel for 20 years, and has tested its engines with blends of up to 60% hydrogen and 40% natural gas. —Marco Wiren, President, Wärtsilä Energy Business.
Starfire Energy, a Colorado-based developer of modular chemical plants for the carbon-free production of ammonia and hydrogen, has closed a major funding round. Proceeds will be used to advance the development of commercial-scale applications to decarbonize ammonia production and unlock its potential as a zero-carbon energy carrier.
Scottish Enterprise, Transport Scotland and the Hydrogen Accelerator, based at the University of St Andrews, have appointed Arcola Energy and a consortium of industry leaders in hydrogen fuel cell integration, rail engineering and functional safety to deliver Scotland’s first hydrogen powered train.
Alstom will supply six hydrogen fuel cell trains, with the option for eight more, to FNM (Ferrovie Nord Milano), the main transport and mobility group in the Italian region of Lombardy, for a total amount of approximately €160 million. The hydrogen version will match the operational performance of diesel trains, including their range.
Energy Vault, a company developing grid-scale gravity energy storage solutions, has entered into an energy storage system agreement with DG Fuels, a developer of renewable hydrogen and biogenic-based, synthetic sustainable aviation fuel (SAF) and diesel fuel. The Louisiana facility is the company’s first major project.
Heliogen and Bloom Energy have successfully demonstrated the production of green hydrogen by integrating the companies’ technologies: Heliogen’s concentrated solar energy system and the Bloom Electrolyzer. Electricity accounts for nearly 80% of the cost of hydrogen from electrolysis. Source: Heliogen.
Researchers from the Chinese Academy of Sciences and Tsinghua University have used a gallium, indium, tin and bismuth alloy to generate hydrogen, when placed in contact with an aluminum plate immersed in water. The hydrogen is then used in a PEM fuel cell. In the 1960s, Woodall et al. In 2015, Zhang et al.
China Petroleum & Chemical Corporation (Sinopec) officially launched China’s first methanol-to-hydrogen and hydrogen refueling service station in Dalian, China. The storage and transportation cost of methanol is also much lower than hydrogen, making methanol-to-hydrogen an attractive hydrogen production technology.
Researchers at Ariel University in Israel have developed a new type of hydrogen generator for “on-demand” use with fuel cells. Hydrogen is produced in a catalytic hydrolysis reaction of sodium borohydride (NaBH 4 ) with ruthenium powder as a catalyst. Zakhvatkin et al. —Zakhvatkin et al. 1c00367.
Demand for large-scale hydrogen projects from industry is steadily increasing. In response, H-TEC SYSTEMS, a subsidiary of MAN Energy Solutions, has developed a new Modular Hydrogen Platform (MHP)—a scalable system for the industrial production of green hydrogen.
China-based SANY, one of the largest construction equipment manufacturers in the world, is developing hydrogen fuel cell construction vehicles; two recent examples include a dump truck and a mixer truck, freshly rolled out of SANY’s intelligent flagship factory. The latter is the first hydrogen-powered mixer truck in the world.
Conventional water electrolysis for the production of hydrogen faces technological challenges to improve the efficiency of the water-splitting reaction for the sluggish oxygen evolution reaction (OER). An open-access paper on their work is published in the RSC journal Energy & Environmental Science.
Toyota has commissioned Victoria’s first commercial-grade permanent hydrogen production, storage and refuelling facility at its former manufacturing site at Altona in Melbourne’s west. Sustainably produced hydrogen is the core element to fuel vehicles like the Toyota Mirai FCEV.
A team led by researchers at Tokyo Institute of Technology (Tokyo Tech) have discovered a new bimetallic electrocatalyst for the oxygen evolution reaction (OER) in electrochemical water splitting: CaFe 2 O 4. The study is published in the journal ACS Applied Energy Materials. Sugawara et al. 0c02710.
Element 1 Corporation (e1NA), Zhejiang Methanol Hydrogen Technology (ZMHT) and Zhejiang Element 1 (e1China) have formed a joint venture company—Zhejiang Hydrogen One Energy Technology Co., — to drive methanol-based hydrogen generation technology and commercialize e1NA’s technology throughout Greater China.
Photoelectrochemical (PEC) water splitting based on solar energy is one promising approach for the production of green hydrogen. However, its widespread application is limited by a lack of efficient photoanodes for catalyzing the rate-limiting oxygen evolution reaction (OER), an important reaction in PEC water splitting.
the developer of a technology to produce renewable hydrogen using sunlight and water ( earlier post ), is working with Suzhou GH New Energy Co. a division of GCL Poly, in China to make the final modifications to the solar cells required to manufacture the Gen 1 hydrogen production panels to be used in demonstration pilot plants.
ENEOS Corporation has constructed a demonstration plant in Brisbane, Australia, to produce methylcyclohexane (MCH), a liquid organic hydrogen carrier (LOHC), using its proprietary low-cost electrochemical synthesis of organic hydride method Direct MCH. MCH contains more than 500 times more hydrogen per unit volume than hydrogen gas.
A development team from CoorsTek Membrane Sciences, in collaboration with international research partners, have successfully used ceramic membrane technology to develop a scalable hydrogen generator that makes hydrogen from electricity and fuels including natural gas, biogas and ammonia with near zero energy loss.
PEUGEOT has become one of the first manufacturers to offer in series production, from 2021 onwards in the compact utility van segment, an electric version powered by a hydrogen fuel cell in addition to its battery-electric version. It emits only water vapor through the exhaust pipe. kg at a pressure of 700 bar.
Researchers in Israel have designed a separate-cell photoelectrochemical (PEC) water-splitting system with decoupled hydrogen and oxygen cells for centralized hydrogen production. It addresses the challenges of designing, building, and optimizing the device for assessing large-scale hydrogen generation. Landman et al.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content