This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
BC Hydro has selected S&C Electric Company, a renewable energy integration company, for a sodium-sulfur (NaS) battery energystorage project intended to improve service reliability for a remote mountain community in British Columbia.
One of the more promising candidates for batteries beyond the current standard of lithium-ion materials is the sodium-ion (Na-ion) battery. Na-ion is particularly attractive because of the greater abundance and lower cost of sodium compared with lithium. In addition, when cycled at high voltage (4.5
Xcel Energy has released the preliminary results from its wind-to-battery (W2B) storage project in Minnesota, and termed the technology successful. We have proved that this technology can perform the functions of storage that we were looking for to help us manage the variability of wind energy on our operating system.
Pacific Gas and Electric Company (PG&E) and the California Energy Commission today unveiled a utility-scale sodium-sulfur battery energystorage system ( earlier post ) pilot project to better balance power needs of the electric grid. The system has a 4 megawatt capacity, and can store more than six hours of energy.
A plot of ESOI for 7 potential grid-scale energystorage technologies. Benson from Stanford University and Stanford’s Global Climate and Energy Project (GCEP) has quantified the energetic costs of 7 different grid-scale energystorage technologies over time. Credit: Barnhart and Benson, 2013. Click to enlarge.
The US Department of Energy is awarding $620 million for projects around the country to demonstrate advanced Smart Grid technologies and integrated systems. The selected projects include advanced battery systems (including flow batteries), flywheels, and compressed air energy systems. Tehachapi Wind EnergyStorage Project.
The US Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) has selected 19 new projects to receive a total of $43 million to develop breakthrough energystorage technologies and support promising small businesses. Advanced Management And Protection Of Energy-Storage Devices (AMPED).
GE’s EnergyStorage business announced $63 million in new Durathon sodium-halide battery orders since the business launched in July. The technology is unique because it can function in a variety of extreme conditions and store as much energy as lead-acid batteries twice its size while lasting up to 10 times as long.
The New York State Energy Research and Development Authority (NYSERDA) has awarded $250,000 to each of eight companies and research centers to develop working prototypes for a wide range of energy-storage technologies. The recipients are all members of the NY Battery and EnergyStorage Technology ( NY-BEST ) Consortium.
Researchers at Pacific Northwest National Laboratory (PNNL) have devised an alloying strategy that enables sodium-beta batteries to operate at significantly lower temperatures. The new electrode enables sodium-beta batteries to last longer, helps streamline their manufacturing process and reduces the risk of accidental fire.
The hybrid systems research team at GE Global Research has successfully demonstrated a dual battery system for an electric transit bus, pairing a high-energy density sodium metal halide battery with a high-power lithium battery. Most types of batteries today come with a trade-off between power and energystorage.
The study, which provides a joint industry analysis of how different types of batteries are used in different automotive applications, concludes that lead-based batteries will by necessity remain the most wide-spread energystorage system in automotive applications for the foreseeable future. Sodium-nickel chloride batteries.
Natron Energy, a developer of new battery cell technology based on Prussian Blue analogue electrodes and a sodium-ion electrolyte, has ( earlier post ), has been awarded a $3-million grant by the California Energy Commission (CEC) for “Advanced EnergyStorage for Electric Vehicle Charging Support.”
Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The estimated sodiumstorage up to C 6.9 100 to 150 mA h g ? 100 to 150 mA h g ?1
The New York State Energy Research and Development Authority (NYSERDA) will award $8 million to help develop or commercialize 19 advanced energystorage projects. This will enable increased renewable-energy contributions to the grid. Lithium-air storage systems that could have applications in vehicle or grid systems.
Classification of potential electrical storage for stationary applications. published in the ACS journal Chemical Reviews , reviews in detail four stationary storage systems considered the most promising candidates for electrochemical energystorage: vanadium redox flow; sodium-beta alumina membrane; lithium-ion; and lead-carbon batteries.
Natron Energy , a developer of new battery cell technology based on Prussian Blue analogue electrodes and a sodium-ion electrolyte, has closed a strategic investment by Chevron Technology Ventures (CTV) to support the development of stationary energystorage systems for demand charge management at electric vehicle (EV) charging stations.
John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The cell operates without a catalyst and has high storage efficiency. The present sodium-sulfur battery operates above 300 °C. V and charges at 4.2-4.4
Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. Thus, further research is required to find better sodium host materials.
RAL researchers are proposing a new process for the decomposition of ammonia to release hydrogen that involves the stoichiometric decomposition and formation of sodium amide from Na metal. To date, very few candidates show potential beyond that of the seminal work on titanium-doped sodium alanate. Credit: ACS, David et al.
After years of anticipation, sodium-ion batteries are starting to deliver on their promise for energystorage. But so far, their commercialization is limited to large-scale uses such as storingenergy on the grid. Sodium-ion batteries just don't have the oomph needed for EVs and laptops.
The research group of Professor Xiangwu Zhang from North Carolina State University presents the concept of high-performance sodium-ion batteries that applies special electrode preparation methods. Sustainable technologies should make it possible to store power from the grid and feed power back into it.
nm, average) of iron pyrite (FeS 2 ) nanoparticles are advantageous to sustain reversible conversion reactions in sodium ion and lithium ion batteries. In the paper, they reported reversible capacities of more than 500 and 600 mAh/g for sodium and lithium storage for ultrafine nanoparticles, along with improved cycling and rate capability.
The circulating seawater in the open-cathode system results in a continuous supply of sodium ions, endowing the system with superior cycling stability that allows the application of various alternative anodes to sodium metal by compensating for irreversible charge losses. an alloying material), in full sodium-ion configuration.
However, there still remain some major hurdles to the development of Ca-based batteries, one of them being a lack of knowledge on suitable cathode materials that can efficiently store and release Ca in a reversible manner. —Prof. Haesun Park, Chung-Ang University, co-corresponding author. Haesun Park, Christopher J. 202101698.
With the worldwide emphasis on renewable energy sources such as solar and wind, energystorage has become an essential solution for grid stability and reliability. Not only that, but energystorage is also an important research direction in the field of electric vehicles. Classification of energystorage.
Researchers within the RS2E network on electrochemical energystorage (Réseau sur le stockage électrochimique de l’énergie) in France have developed the first sodium-ion battery in an 18650 format. The main advantage of the prototype is that it relies on sodium, an element far more abundant and less costly than lithium.
Described in a paper published in the RSC journal Energy & Environmental Science , the smart membrane separator could enable the design of a new category of rechargeable/refillable energystorage devices with high energy density and specific power that would overcome the contemporary limitations of electric vehicles.
In trials, GE’s sodium metal halide Durathon batteries ( earlier post ) have successfully powered GE Mining’s Scoop, an underground vehicle that transports mining materials, at Coal River Energy, LLC in Alum Creek, West Virginia. Sodium-metal halide cell basic chemistry. Click to enlarge.
The fact that MXenes can accommodate ions and molecules in this way is significant because it expands their ability to storeenergy. Barsoum and Gogotsi’s report looks at intercalation of MXenes with a variety of ions, including lithium, sodium, magnesium, potassium, ammonium and aluminum ions. —Yury Gogotsi. Maria R.
The sodium alanate material used to store the hydrogen resides within the tubes. Researchers at Sandia National Laboratories have successfully designed and demonstrated key features of a hydrogen storage system that utilizes a complex metal hydride material—sodium alanate. Photo by Randy Wong) Click to enlarge.
We are transitioning from fossil fuels to renewable energy sources such as wind and solar, and the use of energystorage is becoming more widespread. And with the popularity of electric vehicles, the grid is under more and more pressure, so the demand for energystorage is growing. Battery storage.
The University of Michigan (U-M) and eight partner institutions will explore the use of ceramic ion conductors as replacements for the traditional liquid or polymer electrolytes in common lithium-ion batteries for electric vehicles and in flow cells for storing renewable energy in the grid.
However, researchers have found that the contact between the ceramic electrolyte and a solid lithium anode is insufficient for storing and supplying the amount of power needed for most electronics. These electrolytes are highly conductive, non-combustible and strong enough to resist dendrites.
To prepare the material, the team reacted sodium thiosulfate with hydrochloric acid to create monodisperse sulfur nanoparticles (NPs); these NPs were then coated with TiO 2 , resulting in the formation of sulfur–TiO 2 core–shell nanoparticles. Click to enlarge. It basically worked the first time we tried it.
MIT professor Donald Sadoway and his team have demonstrated a long-cycle-life calcium-metal-based liquid-metal rechargeable battery for grid-scale energystorage, overcoming the problems that have precluded the use of the element: its high melting temperature, high reactivity and unfavorably high solubility in molten salts.
The study also concludes that lead-based batteries will remain the only viable mass market energystorage system in automotive applications for the foreseeable future. In full-hybrid vehicles, the storedenergy is also used for a certain range of electric driving.
But a new way to firm up the world’s electricity grids is fast developing: sodium-ion batteries. This emerging energystorage technology could be a game-changer – enabling our grids to run on 100% renewables. At present, lithium-ion batteries are the primary storage technology but are best for short-term storage.
But a new way to firm up the world’s electricity grids is fast developing: sodium-ion batteries. This emerging energystorage technology could be a game-changer – enabling our grids to run on 100% renewables. At present, lithium-ion batteries are the primary storage technology but are best for short-term storage.
Video: EV Guru: Sodium-Ion Batteries are Coming Sooner Than You think! The mining industry cannot keep up with the demand, so the alternative is to manufacture batteries based on sodium chemistry. The big issue with sodium-ion batteries is that they can store only about two-thirds of the energy of Li-ion batteries of equivalent size.
The projects selected are grouped into 10 areas: EnergyStorage (6 projects). Biomass Energy (5 projects). Conventional Energy (1 project). ENERGYSTORAGE. Electronville: High-Amperage EnergyStorage Device-EnergyStorage for the Neighborhood. Carbon Capture (5 projects).
Lithium-ion battery cells are currently dominant in electric cars and energystorage, but researchers are constantly looking to improve on them. The need to increase the amount of electricity a battery can store, decrease charging times, and lower costs is driving experimentation with other battery chemistries.
Graphite contains flat layers of carbon atoms, and during battery charging, lithium atoms are stored between these layers in a process called intercalation. The laser-induced synthesis approach underlines the potential of MXene-based hybrid materials for high-performance energystorage applications. —Bayhan et al.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content