This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Solid-state sodium-ion battery company LiNa Energy ( earlier post ) successfully completed an independent demonstration of its lithium-free sodium batteries for energystorage systems with commercial partner ion Ventures.
ion Ventures, a modern utility and energystorage infrastructure specialist, and LiNa Energy , a solid-state battery technology developer, concluded their first successful trial of LiNa’s proprietary solid-state sodium-nickel battery platform at an undisclosed location in South East England last week.
the leader in sodium-ion (Na-ion) battery technology, has received its first order from ICM Australia for high-energysodium-ion batteries for use in the Australian market. Unlike lithium-ion batteries, Faradion’s sodium-ion batteries have exceptional thermal stability and safety. UK-based Faradion Ltd.,
(CATL) unveiled its first-generation sodium-ion battery, together with its AB battery pack solution—which is able to integrate sodium-ion cells and lithium-ion cells into one pack. The sodium-ion battery has a similar working principle to the lithium-ion battery; sodium ions shuttle between the cathode and anode.
BC Hydro has selected S&C Electric Company, a renewable energy integration company, for a sodium-sulfur (NaS) battery energystorage project intended to improve service reliability for a remote mountain community in British Columbia.
Natron Energy, a manufacturer of sodium-ion batteries, and Clarios International Inc., a manufacturer of low-voltage advanced battery technologies for mobility, will collaborate to manufacture the first mass-produced sodium-ion batteries. Natron has spent 10 years developing sodium-ion battery chemistry for mass manufacturing.
One of the more promising candidates for batteries beyond the current standard of lithium-ion materials is the sodium-ion (Na-ion) battery. Na-ion is particularly attractive because of the greater abundance and lower cost of sodium compared with lithium. In addition, when cycled at high voltage (4.5
a leader in non-aqueous sodium-ion battery technolog ( earlier post ), announced a collaboration which combines Faradion’s IP with AMTE Power’s design and manufacturing capabilities. AMTE Power has branded its sodium-ion product “Ultra Safe” due to its improved safety and enhanced thermal stability.
Cheap and abundant, sodium is a promising candidate for new battery technology. However, the limited performance of sodium-ion batteries has hindered large-scale application. A paper on the work appears in Nature Energy. Sodium-ion batteries (NIBs) have attracted worldwide attention for next-generation energystorage systems.
Xcel Energy has released the preliminary results from its wind-to-battery (W2B) storage project in Minnesota, and termed the technology successful. We have proved that this technology can perform the functions of storage that we were looking for to help us manage the variability of wind energy on our operating system.
Pacific Gas and Electric Company (PG&E) and the California Energy Commission today unveiled a utility-scale sodium-sulfur battery energystorage system ( earlier post ) pilot project to better balance power needs of the electric grid. The system has a 4 megawatt capacity, and can store more than six hours of energy.
Sodium-ion batteries (SIBs), with the intrinsic advantages of resource abundance and geographic uniformity, are desired alternative battery technology to Li-ion batteries (LIBs) for grid-scale energystorage and transportation applications. A 60 mAh single-layer pouch cell was also fabricated and demonstrated stable performance.
Researchers at Pacific Northwest National Laboratory (PNNL) report in a paper in the ACS journal Nano Letters on high-capacity, high-rate sodium-ion (Na-ion) energystorage in functionalized high-surface-area nanocellular carbon foams (NCCF). Sodium-ion intercalation batteries—i.e., Earlier post.)
GE will invest an additional $70 million to expand its sodium-halide battery manufacturing plant in New York, which is part of the company’s new EnergyStorage business. GE is also looking at using the batteries in heavy-duty hybrid applications such as in buses, locomotives and mining vehicles.
GE EnergyStorage Technologies, a unit of GE Transportation, introduced its Durathon sodium-metal halide battery ( earlier post ) for critical backup power. Sodium-metal halide cell basic chemistry. GE is also using the technology to develop advanced transportation energystorage systems. Click to enlarge.
The US Department of Energy is awarding $620 million for projects around the country to demonstrate advanced Smart Grid technologies and integrated systems. The selected projects include advanced battery systems (including flow batteries), flywheels, and compressed air energy systems. Tehachapi Wind EnergyStorage Project.
The US Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) has selected 19 new projects to receive a total of $43 million to develop breakthrough energystorage technologies and support promising small businesses. Advanced Management And Protection Of Energy-Storage Devices (AMPED).
In a paper in Nature Materials , a team of researchers from BASF SE and Justus-Liebig-Universität Gießen report on the performance of a sodium-air (sodium superoxide) cell. Their work, they suggest, demonstrates that substitution of lithium by sodium may offer an unexpected route towards rechargeable metal–air batteries.
Scheme of the new full sodium-ion battery, which combines an intercalation cathode and a conversion anode. The reported performance of the new Na-ion battery suggests that the sodium-ion system is a potentially promising power source for promoting the substantial use of low-cost energystorage systems in the near future, the team concluded.
Researchers led by the Department of Energy’s Pacific Northwest National Laboratory (PNNL) have extended the capacity and duration of sodium-aluminum batteries. The new sodium-based molten salt battery uses two distinct reactions. of peak charge capacity. mAh cm −2 , a discharge duration of 28.2 —Weller et al.
low-cost Na-ion battery system for upcoming power and energy. storage systems, the team concludes in a paper published in the journal Advanced Materials. low-cost Na-ion battery system for upcoming power and energy. storage systems, the team concludes in a paper published in the journal Advanced Materials. Earlier post.)
Tests conducted by Titirici Group , a multidisciplinary research team based at Imperial College London, have found that a novel carbon nanotube electrode material derived from CO 2 —produced by Estonian nanotech company UP Catalyst ( earlier post )—enhances the cyclability of sodium-ion batteries.
GE’s EnergyStorage business announced $63 million in new Durathon sodium-halide battery orders since the business launched in July. The technology is unique because it can function in a variety of extreme conditions and store as much energy as lead-acid batteries twice its size while lasting up to 10 times as long.
The New York State Energy Research and Development Authority (NYSERDA) has awarded $250,000 to each of eight companies and research centers to develop working prototypes for a wide range of energy-storage technologies. The recipients are all members of the NY Battery and EnergyStorage Technology ( NY-BEST ) Consortium.
A plot of ESOI for 7 potential grid-scale energystorage technologies. Benson from Stanford University and Stanford’s Global Climate and Energy Project (GCEP) has quantified the energetic costs of 7 different grid-scale energystorage technologies over time. Credit: Barnhart and Benson, 2013. Click to enlarge.
Researchers at Pacific Northwest National Laboratory (PNNL) have devised an alloying strategy that enables sodium-beta batteries to operate at significantly lower temperatures. The new electrode enables sodium-beta batteries to last longer, helps streamline their manufacturing process and reduces the risk of accidental fire.
Researchers in South Korea have developed a novel high-energy cathode material, Na 1.5 F 0.7 , for sodium-ion (Na-ion) batteries (NIBs). This new material provides an energy density of 600 Wh kg –1 , the highest value among Na-ion cathodes. Ragone plot for the new Na 1.5 cathode and other cathode materials for NIBs.
The hybrid systems research team at GE Global Research has successfully demonstrated a dual battery system for an electric transit bus, pairing a high-energy density sodium metal halide battery with a high-power lithium battery. Most types of batteries today come with a trade-off between power and energystorage.
The study, which provides a joint industry analysis of how different types of batteries are used in different automotive applications, concludes that lead-based batteries will by necessity remain the most wide-spread energystorage system in automotive applications for the foreseeable future. Sodium-nickel chloride batteries.
Researchers at the University of Maryland have developed a nanocomposite material of amorphous, porous FePO 4 nanoparticles electrically wired by single-wall carbon nanotubes as a potential cathode material for sodium-ion batteries (SIBs). SWNT composite is a promising cathode material for viable sodium-ion batteries. C rate (10 mA/g).
Natron Energy, a developer of new battery cell technology based on Prussian Blue analogue electrodes and a sodium-ion electrolyte, has ( earlier post ), has been awarded a $3-million grant by the California Energy Commission (CEC) for “Advanced EnergyStorage for Electric Vehicle Charging Support.”
company, and a leading supplier of specialty batteries and energystorage solutions for the defense, aerospace, medical, commercial and grid energystorage markets, will receive a $3-million award from the Advanced Research Projects Agency-Energy to further develop their catalytic energystorage technology.
A team led by researchers from the Karlsruhe Institute of Technology (KIT) in Germany is proposing a new class of high entropy materials for energystorage applications. Additionally, this approach enables the reduction of toxic and costly elements in battery cathodes, without significantly affecting the energy density.
Researchers at the University of Maryland, with colleagues at the University of Illinois at Chicago, report on a new method for expanding graphite for use as a superior anode for sodium-ion batteries in a paper in Nature Communications. Sodium (Na) is an earth-abundant and inexpensive element, and shares many properties with lithium.
A team of researchers at the US Department of Energy’s Argonne National Laboratory has synthesized amorphous titanium dioxide nanotube (TiO 2 NT) electrodes directly grown on current collectors without binders and additives to use as an anode for sodium-ion batteries.
Schematic of a sodium-nickel chloride cell with planar design. A planar (flat) sodium-nickel chloride battery could deliver 30% more power at lower temperatures than the typical cylindrical design, according to researchers at the US Department of Energy’s Pacific Northwest National Laboratory (PNNL). Click to enlarge.
While long-duration energystorage systems (ESS) for renewables integration and peak load shifting have been a topic of much discussion within the power industry, a variety of short-duration applications for energystorage are also a critical factor in the development of the sector. Click to enlarge.
The New York State Energy Research and Development Authority (NYSERDA) will award $8 million to help develop or commercialize 19 advanced energystorage projects. Lithium-air storage systems that could have applications in vehicle or grid systems. Murray, Jr., million in cost-sharing by recipients for a total of $15.3
GE Chairman and CEO Jeff Immelt shows a sodium-metal halide battery cell at the press conference announcing the battery plant. GE says the planned facility will produce approximately 10 million sodium-metal halide cells each year—equivalent to 900 MWh of energystorage, or enough to support 1,000 GE hybrid locomotives.
Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The estimated sodiumstorage up to C 6.9 100 to 150 mA h g ? 100 to 150 mA h g ?1
The new projects in four focus areas join the existing Faraday Institution research projects that collectively aim to deliver the organisation’s mission to accelerate breakthroughs in energystorage technologies to benefit the UK in the global race to electrification. Next generation sodium ion batteries–NEXGENNA.
According to a new report from Pike Research, worldwide installed revenues for stationary energystorage systems for the electricity grid will grow at a strong pace in the coming decade, increasing from $1.5 Worldwide installed revenue opportunity by energystorage on the grid (ESG) technology, 2010-2020.
The US Department of Energy’s National Energy Technology Laboratory (NETL) is conducting research on alternative options to reduce costs and make large-scale energystorage safer and more practical. Innovative fabrication methods can also lead to significant energystorage system improvements.
In its new report EnergyStorage on the Grid (ESG), Pike Research forecasts that global spending in the ESG market will reach a little over $22 billion over the next 10 years. Energystorage on the grid is reaching a turning point. Installed revenue by ESG technology, worldwide. Click to enlarge. Earlier post.).
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content