This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Solid-state sodium-ion battery company LiNa Energy ( earlier post ) successfully completed an independent demonstration of its lithium-free sodium batteries for energystorage systems with commercial partner ion Ventures.
UK-based battery manufacturer AMTE Power and Faradion Ltd. , a leader in non-aqueous sodium-ion battery technolog ( earlier post ), announced a collaboration which combines Faradion’s IP with AMTE Power’s design and manufacturing capabilities. These trends will drive a significant increase in the use of battery storage.
ion Ventures, a modern utility and energystorage infrastructure specialist, and LiNa Energy , a solid-state battery technology developer, concluded their first successful trial of LiNa’s proprietary solid-state sodium-nickel battery platform at an undisclosed location in South East England last week.
the leader in sodium-ion (Na-ion) battery technology, has received its first order from ICM Australia for high-energysodium-ion batteries for use in the Australian market. Unlike lithium-ion batteries, Faradion’s sodium-ion batteries have exceptional thermal stability and safety. UK-based Faradion Ltd.,
(CATL) unveiled its first-generation sodium-ion battery, together with its AB battery pack solution—which is able to integrate sodium-ion cells and lithium-ion cells into one pack. The sodium-ion battery has a similar working principle to the lithium-ion battery; sodium ions shuttle between the cathode and anode.
Natron Energy, a manufacturer of sodium-ion batteries, and Clarios International Inc., a manufacturer of low-voltage advanced battery technologies for mobility, will collaborate to manufacture the first mass-produced sodium-ion batteries. Natron has spent 10 years developing sodium-ion battery chemistry for mass manufacturing.
Pacific Gas and Electric Company (PG&E) and the California Energy Commission today unveiled a utility-scale sodium-sulfur battery energystorage system ( earlier post ) pilot project to better balance power needs of the electric grid. The project was made possible with a $3.3-million
Xcel Energy has released the preliminary results from its wind-to-battery (W2B) storage project in Minnesota, and termed the technology successful. We have proved that this technology can perform the functions of storage that we were looking for to help us manage the variability of wind energy on our operating system.
The US Department of Energy is awarding $620 million for projects around the country to demonstrate advanced Smart Grid technologies and integrated systems. The selected projects include advanced battery systems (including flow batteries), flywheels, and compressed air energy systems. Los Angeles Department of Water and Power.
GE will invest an additional $70 million to expand its sodium-halide battery manufacturing plant in New York, which is part of the company’s new EnergyStorage business. GE is also looking at using the batteries in heavy-duty hybrid applications such as in buses, locomotives and mining vehicles.
GE EnergyStorage Technologies, a unit of GE Transportation, introduced its Durathon sodium-metal halide battery ( earlier post ) for critical backup power. Sodium-metal halide cell basic chemistry. GE is also using the technology to develop advanced transportation energystorage systems.
The US Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) has selected 19 new projects to receive a total of $43 million to develop breakthrough energystorage technologies and support promising small businesses. Advanced Management And Protection Of Energy-Storage Devices (AMPED).
The hybrid systems research team at GE Global Research has successfully demonstrated a dual battery system for an electric transit bus, pairing a high-energy density sodium metal halide battery with a high-power lithium battery. Most types of batteries today come with a trade-off between power and energystorage.
Researchers led by the Department of Energy’s Pacific Northwest National Laboratory (PNNL) have extended the capacity and duration of sodium-aluminum batteries. The new sodium-based molten salt battery uses two distinct reactions. of peak charge capacity. mAh cm −2 , a discharge duration of 28.2 —Weller et al.
GE’s EnergyStorage business announced $63 million in new Durathon sodium-halide battery orders since the business launched in July. The technology is unique because it can function in a variety of extreme conditions and store as much energy as lead-acid batteries twice its size while lasting up to 10 times as long.
A plot of ESOI for 7 potential grid-scale energystorage technologies. Benson from Stanford University and Stanford’s Global Climate and Energy Project (GCEP) has quantified the energetic costs of 7 different grid-scale energystorage technologies over time. Credit: Barnhart and Benson, 2013. Click to enlarge.
Scheme of the new full sodium-ion battery, which combines an intercalation cathode and a conversion anode. The reported performance of the new Na-ion battery suggests that the sodium-ion system is a potentially promising power source for promoting the substantial use of low-cost energystorage systems in the near future, the team concluded.
Schematic of a sodium-nickel chloride cell with planar design. A planar (flat) sodium-nickel chloride battery could deliver 30% more power at lower temperatures than the typical cylindrical design, according to researchers at the US Department of Energy’s Pacific Northwest National Laboratory (PNNL). Earlier post.).
The New York State Energy Research and Development Authority (NYSERDA) has awarded $250,000 to each of eight companies and research centers to develop working prototypes for a wide range of energy-storage technologies. The recipients are all members of the NY Battery and EnergyStorage Technology ( NY-BEST ) Consortium.
Researchers at Pacific Northwest National Laboratory (PNNL) have devised an alloying strategy that enables sodium-beta batteries to operate at significantly lower temperatures. The new electrode enables sodium-beta batteries to last longer, helps streamline their manufacturing process and reduces the risk of accidental fire.
Researchers in South Korea have developed a novel high-energy cathode material, Na 1.5 F 0.7 , for sodium-ion (Na-ion) batteries (NIBs). This new material provides an energy density of 600 Wh kg –1 , the highest value among Na-ion cathodes. Ragone plot for the new Na 1.5 cathode and other cathode materials for NIBs.
Natron Energy, a developer of new battery cell technology based on Prussian Blue analogue electrodes and a sodium-ion electrolyte, has ( earlier post ), has been awarded a $3-million grant by the California Energy Commission (CEC) for “Advanced EnergyStorage for Electric Vehicle Charging Support.”
Researchers at the University of Maryland, with colleagues at the University of Illinois at Chicago, report on a new method for expanding graphite for use as a superior anode for sodium-ion batteries in a paper in Nature Communications. Sodium (Na) is an earth-abundant and inexpensive element, and shares many properties with lithium.
The US Department of Energy’s National Energy Technology Laboratory (NETL) is conducting research on alternative options to reduce costs and make large-scale energystorage safer and more practical. Innovative fabrication methods can also lead to significant energystorage system improvements.
The New York State Energy Research and Development Authority (NYSERDA) will award $8 million to help develop or commercialize 19 advanced energystorage projects. Integrating battery and ultra-capacitors on a common power circuit serving two renewable-energy generation sources. Murray, Jr., million in funding.
GE Chairman and CEO Jeff Immelt shows a sodium-metal halide battery cell at the press conference announcing the battery plant. GE says the planned facility will produce approximately 10 million sodium-metal halide cells each year—equivalent to 900 MWh of energystorage, or enough to support 1,000 GE hybrid locomotives.
In its new report EnergyStorage on the Grid (ESG), Pike Research forecasts that global spending in the ESG market will reach a little over $22 billion over the next 10 years. Energystorage on the grid is reaching a turning point. Installed revenue by ESG technology, worldwide. Click to enlarge. Earlier post.).
Researchers at the University of Maryland have developed a nanocomposite material of amorphous, porous FePO 4 nanoparticles electrically wired by single-wall carbon nanotubes as a potential cathode material for sodium-ion batteries (SIBs). SWNT composite is a promising cathode material for viable sodium-ion batteries. C rate (10 mA/g).
published in the ACS journal Chemical Reviews , reviews in detail four stationary storage systems considered the most promising candidates for electrochemical energystorage: vanadium redox flow; sodium-beta alumina membrane; lithium-ion; and lead-carbon batteries. The need for storage. Credit: ACS, Yang et al.
While long-duration energystorage systems (ESS) for renewables integration and peak load shifting have been a topic of much discussion within the power industry, a variety of short-duration applications for energystorage are also a critical factor in the development of the sector. Click to enlarge.
Natron Energy , a developer of new battery cell technology based on Prussian Blue analogue electrodes and a sodium-ion electrolyte, has closed a strategic investment by Chevron Technology Ventures (CTV) to support the development of stationary energystorage systems for demand charge management at electric vehicle (EV) charging stations.
John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The cell operates without a catalyst and has high storage efficiency. The present sodium-sulfur battery operates above 300 °C. V and charges at 4.2-4.4
Yi Cui has developed nanoparticle copper hexacyanoferrate (CuHCF) battery cathode materials that demonstrate long cycle life and high power for use in grid storage applications. Stationary energystorage systems that can operate for many cycles, at high power, with high round-trip energy efficiency, and at low cost are required.
Having crossed some technical hurdles, low cost sodium batteries are hurtling towards the market for grid energystorage, EVs, and more. The post Sodium Batteries Challenge Lithium-Ion On Cost, Supply Chain appeared first on CleanTechnica.
Of the eleven competing energystorage technologies analyzed in a recent report from Pike Research, the cleantech industry analyst firm forecasts that Li-ion batteries will be the fastest growing category for the Stationary Utility EnergyStorage (SUES) sector, growing to a $1.1 Current stationary energystorage options.
RAL researchers are proposing a new process for the decomposition of ammonia to release hydrogen that involves the stoichiometric decomposition and formation of sodium amide from Na metal. To date, very few candidates show potential beyond that of the seminal work on titanium-doped sodium alanate. Credit: ACS, David et al.
In trials, GE’s sodium metal halide Durathon batteries ( earlier post ) have successfully powered GE Mining’s Scoop, an underground vehicle that transports mining materials, at Coal River Energy, LLC in Alum Creek, West Virginia. The Durathon-powered Scoop at work. Sodium-metal halide cell basic chemistry.
E-bike powered by Faradion prototype Na-ion battery pack. British battery R&D company Faradion has demonstrated a proof-of-concept electric bike powered by sodium-ion batteries at the headquarters of Williams Advanced Engineering, which collaborated in the development of the bike. Sodium-ion intercalation batteries—i.e.,
Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. Thus, further research is required to find better sodium host materials.
In the passenger car segment, sodium-ion batteries can generally meet the needs of models with a range of up to 400 kilometers, a CATL executive previously said. CATL's sodium-ion batteries are not far from starting to be installed in vehicles, after the Chinese power battery giant unveiled the new batteries in July 2021.
The research group of Professor Xiangwu Zhang from North Carolina State University presents the concept of high-performance sodium-ion batteries that applies special electrode preparation methods. Sustainable technologies should make it possible to store power from the grid and feed power back into it.
Described in a paper published in the RSC journal Energy & Environmental Science , the smart membrane separator could enable the design of a new category of rechargeable/refillable energystorage devices with high energy density and specific power that would overcome the contemporary limitations of electric vehicles.
The chemistries included in the report are all lithium-ion (Li-ion) chemistries, flow battery chemistries, sodium metal halide, sodium sulfur (NaS), aqueous sodium-ion, and advanced lead-carbon. The only major application segment with significant penetration by other chemistries is stationary energystorage (0.3%
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content