This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Argonne National Laboratory, which has contributed heavily to the research and development of Li-ion battery technology, is now pursuing research into Lithium-air batteries. Li-air batteries use a catalytic air cathode that converts oxygen to lithium peroxide; an electrolyte; and a lithium anode.
General schematic of a lithium-air battery. Leveraging expertise in materials science, nanotechnology, green chemistry and supercomputing, scientists at IBM Research’s Almaden lab in San Jose, California, are undertaking a multi-year research initiative around a grid-scale, efficient, affordable electrical energystorage network.
The goal of the Energy for Sustainability program is to support fundamental engineering research that will enable innovative processes for the sustainable production of electricity and fuels, and for energystorage. Flow batteries for energystorage applications are also appropriate.
The battery, which can be low cost and reliable in terms of safety, provides another chemistry for post Li-ion batteries, they suggest, and with higher practical energy densities than Li-air systems for supporting applications including electric vehicles and large-scale grid energystorage. Higher energy efficiency.
The US Department of Energy is awarding $106 million in funding for 37 research projects selected in the second round by the DOE’s Advanced Research Projects Agency-Energy (ARPA-E). Water will be the primary byproduct. A novel metal complex for electrolysis of water will be used to generate the hydrogen at high rates.
Lithium-air batteries, with a theoretical gravimetric energy density of ?3500 3500 Wh/kg, are of great interest as next-generation energystorage systems that would enable, among other things, much longer range in EVs. Lithium-ion rechargeable batteries are based on a pair of intercalation electrodes. “air”
In electrochemical energystorage devices, nanostructured materials enhance Li-ion batteries by shortening the diffusion length of Li ions and benefit capacitors by providing electrodes with large surface areas. In this case, the manganese oxide nanowires were actually made by the viruses. —Oh et al.
MIT researchers have found a new family of highly active catalyst materials that provides the best performance yet in the oxygen evolution reaction (OER) in electrochemical water-splitting—a key requirement for energystorage and delivery systems such as advanced fuel cells and lithium-air batteries.
Advanced Batteries for Transportation and Renewable EnergyStorage. The focus is on high-energy density and high-power density batteries suitable for transportation and renewable energystorage applications.
Lithium-air (or lithium-oxygen) batteries potentially could offer three times the gravimetric energy of current Li-ion batteries (3500 Wh/kg at the cell level); as such, they are looked to a potential solution for long-range EVs. V), where Li 2 O 2 is formed directly through electrochemical steps. —Tuodziecki et al.
Theoretically, with renewable electricity, the 95 gCO 2 /km target could also be met by extended range electric vehicles with 40 miles all-electric range if 50% of driving is powered by the battery, or by fuel cell electric vehicles (FECVs), with hydrogen produced by water electrolysis. While the so-called post-LiBs, viz.,
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content