This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
The mesh with BiVO 4 nanowire photoanode for water oxidation and Rh-SrTiO 3 nanowire photocathode for water reduction produces hydrogen gas without an electron mediator. When immersed in water with visible light irradiation (? ? In the present study, we developed a new architecture for direct solarwater-splitting.
The Sparc Green Hydrogen process combines concentrated solar (CS) with photocatalytic water splitting. The company’s key development allows for reduced photocatalyst use and integration with existing concentrated solar systems. The facility is home to Australia’s largest solar thermal research hub.
Researchers in Europe led by a team from ETH Zurich have designed a fuel production system that uses water, CO 2 , and sunlight to produce aviation fuel. We are the first to demonstrate the entire thermochemical process chain from water and CO 2 to kerosene in a fully-integrated solar tower system. Zoller et al.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. Qian Wang et al. Nature Energy doi: 10.1038/s41560-020-0678-6.
A study by a team of researchers from Technische Universität Berlin (TUB) and Fritz-Haber-Institut der Max-Planck-Gesellschaft has found that direct seawater splitting for hydrogen production has substantial drawbacks compared to conventional water splitting and offers almost no advantage. Additionally, H 2 O is needed for water splitting.
The Dutch Institute for Fundamental Energy Research ( DIFFER ) is partnering with Toyota Motor Europe (TME) to develop a device that absorbs water vapor, and splits it into hydrogen and oxygen directly using solar energy. In this project, DIFFER and TME are exploring an innovative way to produce hydrogen directly out of humid air.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. Alongside hydrogen generation from water, the multi-disciplinary research team is investigating photochemical conversion of carbon dioxide into synthetic fuel.
Researchers in Israel have designed a separate-cell photoelectrochemical (PEC) water-splitting system with decoupled hydrogen and oxygen cells for centralized hydrogen production. It addresses the challenges of designing, building, and optimizing the device for assessing large-scale hydrogen generation. Landman et al.
Photoelectrochemical (PEC) water splitting based on solar energy is one promising approach for the production of green hydrogen. However, its widespread application is limited by a lack of efficient photoanodes for catalyzing the rate-limiting oxygen evolution reaction (OER), an important reaction in PEC water splitting.
Researchers at Monash University in Australia have conducted a lifecycle analysis and net energy analysis (LCA/NEA) of a hypothetical large-scale solar-electrolysis plant for the production of green hydrogen. of hydrogen is currently produced via water electrolysis and only a fraction of this production is powered by renewable energy.
the developer of a technology to produce renewable hydrogen using sunlight and water ( earlier post ), is working with Suzhou GH New Energy Co. a division of GCL Poly, in China to make the final modifications to the solar cells required to manufacture the Gen 1 hydrogen production panels to be used in demonstration pilot plants.
The NREL scientists analyzed solar thermochemical hydrogen (STCH) production, which can be potentially more energy-efficient than producing hydrogen via the commonly used electrolysis method. Electrolysis needs electricity to split water into hydrogen and oxygen. A conceptual solar thermochemical hydrogen production platform.
Scientists at Tokyo Institute of Technology (Tokyo Tech) have developed a hybrid material constructed from a metal oxide nanosheet and a light-absorbing molecule for splitting water molecules (H 2 O) to obtain hydrogen (H 2 ) under sunlight. Dye-sensitized H 2 evolution using a wide-gap metal oxide. Adopted with permission. 0c02053.
The US Department of Energy (DOE) selected the National Alliance for Water Innovation (NAWI) to lead a US Department of Energy (DOE) Energy-Water Desalination Hub that will address water security issues in the United States. This suite of technologies will treat “non-traditional” water sources for multiple end-use applications.
Heliogen and Bloom Energy have successfully demonstrated the production of green hydrogen by integrating the companies’ technologies: Heliogen’s concentrated solar energy system and the Bloom Electrolyzer. Because it operates at high temperatures, the Bloom Electrolyzer requires less energy to break up water molecules and produce hydrogen.
Bioscience engineers at KU Leuven have created a solar panel that produces hydrogen gas from moisture in the air. Twenty of these solar panels could provide electricity and heat for one family for an entire winter. A traditional solar panel converts between 18 to 20% of the solar energy into electricity.
Researchers from the Karlsruhe Institute of Technology (KIT) and their Canadian partners have designed a low-cost photoreactor design for solar-driven synthesis. Until now, however, the technology has mainly been found in the laboratory because the costs of producing solar hydrogen were simply too high. Kant et al.
Researchers at Uppsala University have developed photocatalytic composite polymer nanoparticles (“polymer dots”) that show promising performance and stability for the production of hydrogen from water and sunlight. These polymer dots are designed to be both environmentally friendly and cost-effective.
Scientists from the US Department of Energy’s National Renewable Energy Laboratory (NREL) and Lawrence Berkeley National Laboratory (Berkeley Lab) are providing researchers with a guide to how best to measure the efficiency of producing hydrogen directly from solar power. PEC water-splitting was first noted in scientific publications in 1972.
Researchers from the US Department of Energy’s (DOE) Argonne National Laboratory have combined two membrane-bound protein complexes to perform a complete conversion of water molecules to hydrogen and oxygen. Poluektov (2018) “Z-scheme solarwater splitting via self-assembly of photosystem I-catalyst hybrids in thylakoid membranes” Chem.
Scientists at Tokyo Institute of Technology (Tokyo Tech) have demonstrated the first visible-light photoelectrochemical system for water splitting using TiO 2 enhanced with cobalt. The proposed approach is simple and represents a stepping stone in the quest to achieve affordable water splitting to produce hydrogen. —Prof.
Researchers in Canada have demonstrated a new photochemical diode artificial photosynthesis system that can enable efficient, unassisted overall pure water splitting without using any sacrificial reagent. overall water splitting reaction. These free charges split water molecules into hydrogen and oxygen. … in neutral (pH?~?7.0)
Researchers from the University of North Carolina have synthesized high-photovoltage multijunction Si nanowires (SiNWs) that are co-functionalized to split water catalytically. When integrated with the co-catalysts and suspended in water, these light-activated nanoreactors produced hydrogen gas under visible and infrared light.
The life-cycle water consumption of fuel cell electric vehicles using hydrogen produced from natural gas with steam methane reforming is almost 50% less than the life-cycle water consumption of conventional internal combustion engine vehicles using gasoline, according to a study by researchers at Argonne National Laboratory (ANL).
Africa can produce 50 million tons of green hydrogen a year by 2035, according to a new study by the European Investment Bank (EIB), International Solar Alliance and the African Union, with the support of the Government of Mauritania, HyDeal and UCLG Africa.
DE-FOA-0002254 ) The funding will support the establishment of one large or possibly two smaller DOE Energy Innovation Hubs: integrated multidisciplinary, multi-institutional research teams aimed at accelerating the fundamental scientific breakthroughs needed to enable solar fuel production.
The home is also three times more water-efficient than a typical US home. A 10 kWh battery energy storage system in the garage, using the same lithium-ion cells that are used in the Honda Fit EV, allows stored solar energy to be used at night, when household demand typically peaks and electric vehicles are usually charged.
Researchers at the University of Twente’s MESA+ research institute have made significant efficiency improvements to the technology used to generate solar fuels. Researchers around the world are working on the development of solar fuel technology. This involves generating sustainable fuels using only sunlight, CO 2 and water.
A new study, led by academics at St John’s College, University of Cambridge, has used semi-artificial photosynthesis to explore new ways to produce and store solar energy. They used natural sunlight to convert water into hydrogen and oxygen using a mixture of biological components and manmade technologies. —Sokó?
MIT scientists have designed a solar-powered desalination system that turns saltwater into drinkable water at a higher volume – and lower cost. more… The post MIT scientists used solar power to make drinking water cheaper than tap water appeared first on Electrek.
The feed-stock reduction is achieved primarily by supplementing the process with oxygen and hydrogen produced by water electrolysis units that are powered by clean wind and solar generated electricity. DGF’s cellulosic feedstock does not impair food supply and is essentially water neutral.
The work, presented in a paper in Proceedings of the National Academy of Sciences (PNAS), offers a unique, highly efficient, and inexpensive route for solar fuels synthesis. Experimentally, the designed CuFe catalyst exhibits a high current density of ?38.3 The design of the catalyst is critical to the success of the reaction.
The proceeds of the investment round will accelerate the company’s growth and support the scaling and commercialization of Synhelion’s solar fuels technology. Synhelion is developing two pathways to solar fuels: Redox splitting. The thermochemical splitting of CO 2 and water in a two-step redox reaction yields carbon-neutral fuels.
Researchers at Rice have demonstrated an efficient new way to use solar energy for water splitting. Structure and mechanism of operation of plasmonic photocathode for plasmon-mediated direct electron injection to drive solar-to-chemical energy conversion. (a) b) Energy schematic of the structure. —Robatjazi et al.
Faithful in its design and technology to its concept predecessor, revealed earlier this year ( earlier post ), the production-ready bZ4X is the first model to be developed by Toyota entirely as a BEV. This completely new platform has the flexibility to be used for potential future bZ models and is designed for production at scale.
Energy Vault’s advanced gravity energy storage solutions are based on the proven physics and mechanical engineering fundamentals of pumped hydroelectric energy storage, but replace water with custom-made composite blocks, or “mobile masses”, which do not lose storage capacity over time.
MW solar park at Chattanooga is owned and operated by Silicon Ranch; VW has signed a 20-year power purchase agreement. The award recognizes EPA Green Power Partners who distinguish themselves using on-site renewable energy applications, such as solar photovoltaic (PV) or landfill gas. Click to enlarge. Earlier post.). 2012 baseline.
which designs, engineers, manufactures, sells, and services a comprehensive line of lift trucks and aftermarket parts marketed globally primarily under the Hyster and Yale brand names. accommodates all standard Caterpillar, Bobcat or John Deere attachments and is submersible in up to four feet of water. The DANNAR 4.00
Benefits from the capture include odor reduction, improved water quality and future distributed renewable energy production. SunPower: residential solar with energy storage. Combining solar with energy storage will help provide homeowners peace-of-mind and opportunity to access back-up power during a power outage.
This award marks the first Advanced Class Gas Turbines in the industry specifically designed and purchased as part of a comprehensive plan to sequentially transition from coal, to natural gas and finally to renewable hydrogen fuel, and creates a roadmap for the global industry to follow. Earlier post.). and Hitachi, Ltd.
(SoCalGas) introduced an innovative new solar-powered hydrogen generation system during the California Air Resources Board Technology Expo and Symposium at the University of California, Riverside. STARS converts a record-setting 70% of solar energy into chemical energy. Earlier post.).
To split water into hydrogen on a large scale, we need technologies that are sustainable, efficient, scalable and durable. Using solar energy (or other renewable energy sources ) to split water delivers sustainability , while recent research has made key inroads toward efficiency and scalability.
Heliogen, a company that is transforming sunlight to create and replace fuels, recently announced its launch and also said that it has—for the first time commercially—concentrated solar energy to exceed temperatures greater than 1,000 degrees Celsius. The potential impact of Heliogen’s patented technology is massive.
Scientists have demonstrated that modifying the topmost layer of atoms on the surface of electrodes can have a remarkable impact on the activity of solarwater splitting. This photocurrent drives the chemical reactions that split water into oxygen and hydrogen. —Mingzhao Liu. —Kyoung-Shin Choi. —Mingzhao Liu.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content