Remove Design Remove MIT Remove Water
article thumbnail

Study finds the wettability of porous electrode surfaces is key to making efficient water-splitting or carbon-capturing systems

Green Car Congress

As water-splitting technologies improve, often using porous electrode materials to provide greater surface areas for electrochemical reactions, their efficiency is often limited by the formation of bubbles that can block or clog the reactive surfaces. As a result, there were substantial changes of the transport overpotential.

Water 418
article thumbnail

MIT, Scripps study examines behavior of midwater sediment plumes from deep-sea nodule mining

Green Car Congress

The midwater plume comprises two stages: (i) the dynamic plume, in which the sediment-laden discharge water rapidly descends and dilutes to a neutral buoyancy depth, and (ii) the subsequent ambient plume that is advected by the ocean current and subject to background turbulence and settling. Earlier post.).

MIT 397
article thumbnail

MIT engineers develop process that can treat produced water from gas wells at relatively low cost

Green Car Congress

A new desalination process developed by engineers at MIT could treat produced water—deep water, often heavily laden with salts and minerals—from natural gas wells at relatively low cost. The research is the work of a team including MIT postdoc Prakash Narayan, mechanical engineering professor John H.

MIT 210
article thumbnail

MIT research team finds most efficient oxygen evolution reaction catalyst yet; potential for hydrogen production and rechargeable metal-air batteries

Green Car Congress

A team of MIT researchers lead by Prof. John Goodenough from the University of Texas as Austin, has found one of the most effective catalysts yet discovered for the oxygen evolution reaction (OER) for use in water-splitting to produce hydrogen or in rechargeable metal-air batteries. We further show that this design.

MIT 326
article thumbnail

MIT team testing new SiC nuclear fuel-rod cladding that could lead to safer power plants

Green Car Congress

A team of researchers at MIT is developing and testing a new silicon carbide (SiC) cladding material for nuclear fuel rods that could reduce the risk of hydrogen production by roughly a thousandfold compared to the common zircaloy cladding. SiC is “ very promising, but not at the moment ready for adoption ” by the nuclear industry, he adds.

MIT 247
article thumbnail

MIT researchers propose mechanism for overcoming bottleneck in electroreduction of CO2

Green Car Congress

Researchers at MIT have identified , quantified, and modeled a major reason for the poor performance of electroreduction processes to convert CO 2 to fuel or other useful chemicals. The findings could spur progress on developing a variety of materials and designs for electrochemical carbon dioxide conversion systems. —Soto et al.

MIT 284
article thumbnail

MIT scientists used solar power to make drinking water cheaper than tap water

Electrek

MIT scientists have designed a solar-powered desalination system that turns saltwater into drinkable water at a higher volume – and lower cost. more… The post MIT scientists used solar power to make drinking water cheaper than tap water appeared first on Electrek.

MIT 133