This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Hydrogen produced with renewable electricity could compete on costs with fossil fuel alternatives by 2030, according to a new report from the International Renewable Energy Agency (IRENA). The report— Green Hydrogen Cost Reduction: scaling up electrolyzers to meet the 1.5 Source: IRENA.
This award marks the first Advanced Class Gas Turbines in the industry specifically designed and purchased as part of a comprehensive plan to sequentially transition from coal, to natural gas and finally to renewablehydrogen fuel, and creates a roadmap for the global industry to follow. MHPS gas turbines have more than 3.5
The project is supported by DOE’s Hydrogen and Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy. The project partners will generate zero-carbon hydrogen onsite via electrolysis with solar and wind power and reformation of renewable natural gas from a Texas landfill.
Researchers at the Fraunhofer IFF in Germany are designing the distributed and modular production and distribution of green hydrogen for industry, business and transportation throughout the value chain—a hydrogen factory of the future. The hydrogen factory of the future. The outcome is always green hydrogen.
million for the next phase of Gigastack, a new renewablehydrogen project, as part of the Department for Business, Energy and Industrial Strategy (BEIS) Hydrogen Supply Competition. Producing hydrogen has traditionally been associated with high carbon emissions, but by using renewable electricity—e.g.,
C-Job Naval Architects has designed a new class of liquid hydrogen tanker in partnership with LH2 Europe. LH2 Europe will use the abundant renewable electricity in Scotland to produce green hydrogen and market it at a competitive price with diesel. Hydrogen will be essential to the future of energy. Draught design.
Baker Hughes and Snam have successfully completed testing of the world’s first “hybrid” hydrogen turbine designed for a gas network. The test paves the way to implement adoption of hydrogen blended with natural gas in Snam’s current transmission network infrastructure. 20 billion cubic meters globally).
Universal Hydrogen ( earlier post ) has signed LOIs with Icelandair Group (Iceland), Air Nostrum (Spain), and Ravn Air (Alaska) for aftermarket conversion of aircraft to hydrogen propulsion and for the supply of green hydrogen fuel using Universal Hydrogen’s modular capsules. Icelandair. Icelandair.
the developer of a technology to produce renewablehydrogen using sunlight and water ( earlier post ), is working with Suzhou GH New Energy Co. a division of GCL Poly, in China to make the final modifications to the solar cells required to manufacture the Gen 1 hydrogen production panels to be used in demonstration pilot plants.
Cepsa—the Spain-based multinational oil and gas company—will invest more than €3 billion to establish the Andalusian Green Hydrogen Valley, creating the largest green hydrogen hub in Europe in southern Spain. The company will build two plants with a total capacity of 2 GW to produce green hydrogen.
A Toyota Mirai has set a new world record for distance driven with one fill of hydrogen. Toyota said that the achievement demonstrates hydrogen fuel cell technology as a leading solution for long distance driving with zero emissions. The journey started on 26 May at 5:43 am from the HYSETCO hydrogen station in Orly, France.
Spain-based global energy company Repsol and Talgo, a manufacturer of intercity, standard, and high speed passenger trains, will promote a renewable-hydrogen-powered train, fostering emission-free rail transport in the Iberian Peninsula. To do so, it will have an installed capacity of 400 MW by 2025 and will exceed 1.2 GW by 2030.
Next Hydrogen Solutions Inc., a designer and manufacturer of electrolyzers, recently signed a memorandum of understanding (MoU) with Black & Veatch, a global engineering, procurement, consulting and construction company, to offer a complete and integrated solution for producing large-scale green hydrogen for industrial customers.
(SoCalGas) and H2U Technologies are testing a new electrolyzer, called the Gramme 50, for the production of green hydrogen. The Gramme 50 electrolyzer features a radically different stack design to achieve high current density and outlet pressure requirements. These efforts could help drive down hydrogen production costs.
Independent research and business intelligence company Rystad Energy estimates that there are about 91 planned hydrogen pipeline projects in the world, totaling 30,300 kilometers and due to come online by around 2035. New hydrogen infrastructure is starting to materialize as the world seeks to accelerate its path to net zero.
At CONEXPO, Cummins showcased its new fuel-agnostic 15-liter engine platform with hydrogen, natural gas and advanced diesel engines offering low-to-zero carbon fuel capability. The next-generation engine is designed to accelerate the decarbonization of heavy-duty off-highway applications.
Toyota Motor and its subsidiary, Woven Planet Holdings have developed a working prototype of its portable hydrogen cartridge. This cartridge design will facilitate the everyday transport and supply of hydrogen energy to power a broad range of daily life applications in and outside of the home.
million) ammonia cracker prototype designed to produce green hydrogen at industrial scale. The prototype will use ammonia to deliver 200kg of hydrogen a day—enough to power around 5-10 hydrogen fuel cell-electric buses. Ammonia has a high hydrogen density and is readily transportable in bulk. million (US$4.24
Australian startup H2X has launched with the mission of producing a range of hydrogen-powered hybrid vehicles targeting different applications and markets. The hybrid concept mixes hydrogen fuel cell, battery, and supercapacitors according to what is best suited to each application.
The United States has an extensive network of approximately 3,000,000 miles of natural gas pipelines and more than 1,600 miles of dedicated hydrogen pipeline. However, blend limits depend on the design and condition of current pipeline materials, of pipeline infrastructure equipment, and of applications that utilize natural gas.
Grön Fuels, LLC’s renewable diesel and jet fuel option facility at the Port of Greater Baton Rouge is based on Topsoe’s proprietary HydroFlex hydrotreating and H2bridge hydrogen technologies, including an option to capture ~1 million tons per year of bio-CO 2 for carbon sequestration in suitable deep saline aquifers located below the project site.
has provided a 20-megawatt PEM electrolyzer system to generate green hydrogen, making it the largest in operation in the world. The Cummins electrolyzer system is installed at the Air Liquide hydrogen production facility in Bécancour, Québec. 3,000 tons of hydrogen annually using clean hydropower.
A team led by researchers at Lawrence Berkeley National Laboratory’s (Berkeley Lab) Molecular Foundry has designed and synthesized ultrasmall nickel nanoclusters (?1.5 Through this effort, five national laboratories work towards the goal to address the scientific gaps blocking the advancement of solid hydrogen storage materials.
million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. Westinghouse Electric Company, Front-End Engineering Designs and Investigative Studies for Integrating Commercial Electrolysis Hydrogen Production with Selected Light-Water Reactors.
A new report from Australia’s national science agency CSIRO shows that clean hydrogen can significantly reduce aviation emissions with potential benefits seen within five years. This involves the replacement of on-airport ground support equipment, currently running on liquid fuels and batteries, with hydrogen powered fuel cell alternatives.
Demand for large-scale hydrogen projects from industry is steadily increasing. In response, H-TEC SYSTEMS, a subsidiary of MAN Energy Solutions, has developed a new Modular Hydrogen Platform (MHP)—a scalable system for the industrial production of green hydrogen.
HydroWing, in partnership with Tocardo, introduced the THyPSO (Tidal Hydrogen production, Storage and Offtake), a concept that creates green hydrogen from the sea, contributing to the wider global decarbonization of energy systems. THyPSO has capacity to hold up to two weeks’ worth of hydrogen production in pressurized storage tanks.
Ultra Safe Nuclear Corporation (USNC), a US-based vertical integrator of nuclear technologies and services, Hyundai Engineering and SK E&C are teaming up to conduct research and development for carbon-free hydrogen production. It is also participating in a government-led green hydrogen production demonstration project.
to support its commercial-scale, emissions-free hydrogen manufacturing technology. Monolith Materials is the first US manufacturer to produce “turquoise hydrogen” on a commercial scale. Monolith’s hydrogen is classified as “turquoise hydrogen”. Monolith’s hydrogen is classified as “turquoise hydrogen”.
Perovskite materials may hold the potential to play an important role in a process to produce hydrogen in a renewable manner, according to an analysis from scientists at the National Renewable Energy Laboratory (NREL). Electrolysis needs electricity to split water into hydrogen and oxygen.
Rolls-Royce is further developing its mtu gas engine portfolio for power generation and cogeneration to run on hydrogen as a fuel and thus enable a climate-neutral energy supply. Already today, gensets powered by mtu Series 500 and Series 4000 gas engines can be operated with a gas blending of 10% hydrogen.
The loan guarantee will help finance construction of the largest clean hydrogen storage facility in the world, capable of providing long-term low-cost, seasonal energy storage, furthering grid stability. ACES Delta is a joint venture between Mitsubishi Power Americas and Magnum Development.
kWh/kg hydrogen (vs. With this level of cell energy efficiency—well above International Renewable Energy Agency’s (IRENA) 2050 target and significantly better than existing electrolyzer technologies—hydrogen production cost could be well below US$1.50/kg. 2 and 85 °C of only 1.51 —Gerry Swiegers. Hoang, A.L.,
All of these concepts rely on hydrogen as a primary power source—an option which Airbus believes holds exceptional promise as a clean aviation fuel and is likely to be a solution for aerospace and many other industries to meet their climate-neutral targets. —Guillaume Faury, Airbus CEO. —Guillaume Faury.
Australia-based Global Energy Ventures (GEV) and Pacific Hydro Australia Developments Pty Ltd (Pacific Hydro) have executed a Memorandum of Understanding (MOU) to explore opportunities regarding the production, storage, loading, ground and marine transportation of green hydrogen produced by Pacific Hydro’s Ord Hydrogen Project.
in conjunction with the Government of Canada and the Province of Alberta, announced a multi-billion dollar plan to build a landmark new net-zero blue hydrogen energy complex. Canada’s clean energy diversification strategy and regulatory framework make clear that hydrogen is a key enabler for carbon neutrality by 2050. blue hydrogen).
Total and Engie signed a cooperation agreement to design, develop, build and operate the Masshylia project, France’s largest renewablehydrogen production site at Châteauneuf-les-Martigues in the Provence-Alpes-Côte d’Azur South region.
million) to five demonstration phase projects for low-carbon hydrogen production. The Dolphyn project showcases a floating semi-submersible design with an integrated wind turbine, PEM electrolysis and desalination facilities. The hydrogen projects receiving funding are: Dolphyn. HyNet – low carbon hydrogen plant.
Ørsted, the world’s leading offshore wind developer, together with the major industrial companies in the North Sea Port cluster, have launched the SeaH2Land vision for a gigawatt scale project to reduce carbon emissions in the Dutch-Flemish industrial cluster with renewablehydrogen.
(SoCalGas) will demonstrate a combination of technologies that will produce hydrogen from renewable natural gas (RNG) at SunLine Transit Agency’s hydrogen fueling station in Thousand Palms, California. The SunLine location will be able to produce up to 650 kilograms of hydrogen a day.
million to fund 31 projects to advance next-generation clean hydrogen technologies and support DOE’s recently announced Hydrogen Energy Earthshot initiative ( earlier post ) to reduce the cost and accelerate breakthroughs in the clean hydrogen sector. Domestic hydrogen supply chain components and refueling technologies.
The research focuses on zero-carbon hydrogen and other low-carbon fuels as viable alternatives to diesel for the rail industry. Hydrogen as fuel has many advantages, but locomotive engines must be modified to ensure safe, efficient and clean operation. Hydrogen has been used in light-duty combustion engines.
The US Department of Energy (DOE) released draft guidance for a Clean Hydrogen Production Standard (CHPS), developed to meet the requirements of the Bipartisan Infrastructure Law (BIL), Section 40315. A lifecycle system boundary enables consistent and comprehensive evaluation of diverse hydrogen production systems.
Researchers at Monash University in Australia have conducted a lifecycle analysis and net energy analysis (LCA/NEA) of a hypothetical large-scale solar-electrolysis plant for the production of green hydrogen. of hydrogen is currently produced via water electrolysis and only a fraction of this production is powered by renewable energy.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content