This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers led by engineers at The University of Texas at El Paso (UTEP) have proposed a low-cost, cactus-inspired nickel-based material to help split water more cheaply and efficiently. Nickel, however, is not as quick and effective at breaking down water into hydrogen. who led the study. Every day, I passed this same plant.
Researchers from Japan’s NIMS (National Institute for Materials Science), the University of Tokyo and Hiroshima University have jointly conducted a techno-economic analysis for hydrogen production from photovoltaic power generation (PV) utilizing a battery-assisted electrolyzer. This approximately converts to US$1.92 to US$3.00/kg
Heliogen and Bloom Energy have successfully demonstrated the production of green hydrogen by integrating the companies’ technologies: Heliogen’s concentrated solar energy system and the Bloom Electrolyzer. Electricity accounts for nearly 80% of the cost of hydrogen from electrolysis. Source: Heliogen.
Hydrogen produced with renewable electricity could compete on costs with fossil fuel alternatives by 2030, according to a new report from the International Renewable Energy Agency (IRENA). The report— Green HydrogenCost Reduction: scaling up electrolyzers to meet the 1.5 Source: IRENA.
Researchers from the US and Denmark have engineered a bio-inspired molybdenum sulfide catalyst as an inexpensive, abundant alternative to platinum and coupled it with a light-absorbing electrode to create a photo-electrochemical water splitting device to make hydrogen fuel from sunlight and water. —Hou et al.
Universal Hydrogen has flown a 40-passenger regional airliner using hydrogen fuel cell propulsion. In this first test flight, one of the airplane’s turbine engines was replaced with Universal Hydrogen’s fuel cell-electric, megawatt-class powertrain. The other remained a conventional engine for safety of flight.
million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. A well-established downstream syngas-to-synfuel conversion process, such as Fischer-Tropsch synthesis, converts the syngas to liquid synfuel for a total projected cost of less than $4/gallon.
The loan guarantee will help finance construction of the largest clean hydrogen storage facility in the world, capable of providing long-term low-cost, seasonal energy storage, furthering grid stability. ACES Delta is a joint venture between Mitsubishi Power Americas and Magnum Development.
Evonik has now developed a novel anion exchange membrane (AEM), which should contribute to the breakthrough of electrolytic production of hydrogen. Therefore, new material breakthroughs and design concepts are needed before AEM technology can challenge PEM electrolyzers.
million for the next phase of Gigastack, a new renewable hydrogen project, as part of the Department for Business, Energy and Industrial Strategy (BEIS) Hydrogen Supply Competition. Producing hydrogen has traditionally been associated with high carbon emissions, but by using renewable electricity—e.g., Earlier post.).
the developer of a technology to produce renewable hydrogen using sunlight and water ( earlier post ), is working with Suzhou GH New Energy Co. a division of GCL Poly, in China to make the final modifications to the solar cells required to manufacture the Gen 1 hydrogen production panels to be used in demonstration pilot plants.
Researchers from the Karlsruhe Institute of Technology (KIT) and their Canadian partners have designed a low-cost photoreactor design for solar-driven synthesis. Until now, however, the technology has mainly been found in the laboratory because the costs of producing solar hydrogen were simply too high.
million) to five demonstration phase projects for low-carbon hydrogen production. The Dolphyn project showcases a floating semi-submersible design with an integrated wind turbine, PEM electrolysis and desalination facilities. The hydrogen projects receiving funding are: Dolphyn. HyNet – low carbon hydrogen plant.
Australia-based Global Energy Ventures (GEV) and Pacific Hydro Australia Developments Pty Ltd (Pacific Hydro) have executed a Memorandum of Understanding (MOU) to explore opportunities regarding the production, storage, loading, ground and marine transportation of green hydrogen produced by Pacific Hydro’s Ord Hydrogen Project.
million in federal funding for cost-shared research and development projects under the funding opportunity announcement (FOA) FE-FOA 0002397 , University Turbines Systems Research (UTSR) — Focus on Hydrogen Fuels. There is renewed interest in the use of hydrogen, a clean-burning fuel, for turbine-based electricity generation.
The new electrocatalyst can be produced at large scale and lowcost, providing a new paradigm in a wide application of hydrogen production by electrochemical reaction in future. Conceptual design of the multinary intermetallic electrocatalyst. Illustration of the hydrogen evolution reaction process. Source: CityU.
volts (V) of water-splitting voltage with its novel low-cost electrolysis technology. The theoretical minimum voltage needed to split water molecules into hydrogen and oxygen is 1.23 V or more is generally needed because of the low reaction kinetics. HyperSolar, Inc. announced that it had reached 1.25 Click to enlarge.
The US Department of Energy (DOE) announced $33 million in funding to support innovative hydrogen and fuel cell research & development (R&D), infrastructure supply chain development and validation, and cost analysis activities. ( Efficient and innovative hydrogen production. This would be coordinated with the H2NEW consortium.
The design permits larger amounts of energy to be stored at lower cost than with traditional batteries. First, scalability: AQDS contains only the Earth-abundant atoms carbon, sulphur, hydrogen and oxygen, and can be inexpensively manufactured on large scales. You could theoretically put this on any node on the grid.
The Green Hydrogen Coalition, in conjunction with the Los Angeles Department of Water and Power (LADWP) and other key partners, launched HyDeal LA , an initiative to achieve at-scale green hydrogen procurement at $1.50/kilogram Green hydrogen is the key to reliably achieving 100% renewable energy. kg before 2030.
RAL researchers are proposing a new process for the decomposition of ammonia to release hydrogen that involves the stoichiometric decomposition and formation of sodium amide from Na metal. Indeed, high-density, affordable, and efficient hydrogen storage is one of the key steps in the realization of a hydrogen-based energy sector.
The US Department of Energy (DOE) will award $20 million to ten new research and development projects that will advance hydrogen production and delivery technologies: six on hydrogen production and four on hydrogen delivery. million to develop a reactor for hydrogen production from bio-derived liquids.
Specifically, to expand options for producing, transporting, and using fuel, the five companies intend to unite and pursue the three initiatives of: Participating in races using carbon-neutral fuels; Exploring the use of hydrogen engines in two-wheeled and other vehicles; and. Continuing to race using hydrogen engines.
A new project launched by the US Department of Energy (DOE) and led by Sandia National Laboratories and the National Renewable Energy Laboratory (NREL) will work in support of H 2 USA, the public private partnership introduced in 2013 by the Energy Department and industry stakeholders to address the challenge of hydrogen infrastructure.
During discharge, liquid bromine is reduced to hydrobromic acid along the lower solid graphite electrode, and hydrogen is oxidized at the upper porous electrode. MIT researchers have engineered a new rechargeable, membrane-less hydrogen bromine laminar flow battery with high power density. Credit: Braff et al. Click to enlarge.
The use of 3D printing allows construction of light-weight, low-cost electrolyzers and the rapid prototyping of flow field design. Design of a PEM electrolysis cell. Principal components of an electrolyzer cell are: The membrane electrode assembly (MEA). Source: Cronin et al. Click to enlarge.
John Goodenough from the University of Texas as Austin, has found one of the most effective catalysts yet discovered for the oxygen evolution reaction (OER) for use in water-splitting to produce hydrogen or in rechargeable metal-air batteries. The design of cost-effective, highly active catalysts for. O 2 + 2H 2 O + 4e – ).
Bramble Energy , an innovator in fuel cell technology, has joined forces with Equipmake, Aeristech and the University of Bath to develop a new hydrogen double-deck bus integrating Bramble’s low-cost printed circuit board fuel cell (PCBFC) technology. Earlier post.)
millimoles per gram at 1 bar), fast adsorption time (less than 1 minute), low price, and extraordinary stability to cycling by flue gas. This work creates a general industrialization method toward carbon dioxide capture via DCC atomic-level design strategies. —Mao et al. Haiyan Mao et al.
The battery, which can be lowcost and reliable in terms of safety, provides another chemistry for post Li-ion batteries, they suggest, and with higher practical energy densities than Li-air systems for supporting applications including electric vehicles and large-scale grid energy storage.
It [fuel cell technology] would work beautifully in a regular sedan shape—normal Mercedes luxury, but filled with pressurized hydrogen. Several hydrogen fueling stations are now open in Los Angeles and surrounding areas, including Newport Beach. kWh Li-ion battery pack and a compressed hydrogen storage capacity of 3.7
The team projects that reasonable estimates for production costs and loss of performance due to system implementation result in total energy storage costs roughly 5 times cheaper than those for 700 bar tanks, potentially opening doors for increased adoption of hydrogen as an energy vector. —Antonelli et al. Skipper et al.
The mesh with BiVO 4 nanowire photoanode for water oxidation and Rh-SrTiO 3 nanowire photocathode for water reduction produces hydrogen gas without an electron mediator. an “artificial leaf” to produce hydrogen—based on a nanowire mesh that lends itself to large-scale, low-cost production. Credit: ACS, Liu et al.
million from the US Department of Energy (DOE) to develop and validate technology that will reduce the cost of manufacturing high-performance carbon fiber by 25% to make composite natural gas or hydrogen fuel tanks to power cars and trucks. The Institute for Advanced Composites Manufacturing Innovation (IACMI) will receive $2.7
Formic acid, which is a common preservative and antibacterial agent and is produced naturally in ants and bees, is also is an energy-dense storage medium for hydrogen, with theoretical gravimetric energy density of 1,700 Wh/kg. The principal danger from formic acid is from skin or eye contact with concentrated liquid or vapors.
Scientists from Stanford University, SLAC National Accelerator Laboratory and the Technical University of Denmark have identified a new nickel-gallium catalyst that converts hydrogen and carbon dioxide into methanol at ambient pressure and with fewer side-products than the conventional catalyst. computational materials design.
Hydrogen vehicle market penetration under different scenarios. David Greene and colleagues at Oak Ridge National Laboratory (ORNL) presented at the DOE 2012 Hydrogen and Fuel Cells and Vehicle Technologies Programs Annual Merit Review meetings in Washington this week. Source: Dr. David Greene. Click to enlarge.
H2Carrier is the designer and owner of the proprietary floating energy production and storage system P2XFloater—the first industrial-scale floating green hydrogen and ammonia facility of its kind in the world. Green hydrogen is produced by pumping seawater onboard, purifying the water and feeding it to electrolyzers.
Scientists from Tohoku University have developed a new fluorine-free calcium (Ca) electrolyte based on a hydrogen (monocarborane) cluster that could potentially realize rechargeable Ca batteries. High-energy-density and low-cost calcium (Ca) batteries have been proposed as ‘beyond-Li-ion’ electrochemical energy storage devices.
Energy Vault, a company developing grid-scale gravity energy storage solutions, has entered into an energy storage system agreement with DG Fuels, a developer of renewable hydrogen and biogenic-based, synthetic sustainable aviation fuel (SAF) and diesel fuel. Under the terms of the agreement, Energy Vault agreed to provide 1.6
Researchers at the US Department of Energy’s (DOE’s) Pacific Northwest National Laboratory (PNNL) have developed a new biologically inspired catalyst that is the first iron-based catalyst that converts hydrogen directly to electricity. The catalyst needs to split hydrogen molecules unevenly in an early step of the process.
This technique holds promise for the creation of catalytic materials with high densities of active sites that can serve as effective low-cost alternatives to platinum for generating hydrogen gas from water that is acidic. —Karunadasa et al. —Christopher Chang.
SunHydrogen , the developer of a technology to produce renewable hydrogen using sunlight and water, has extended its sponsored research agreement with the University of Iowa through 31 August 2020. As we are set to begin the production phase of our GEN 1 hydrogen panels, our research efforts will become increasingly focused on GEN 2.
This material, together with the low-cost catalysts and injection moulded components developed, offer a prototype stack costing 43% of its PEM counterpart. The HydroGEN project focused on the realization of electrolyzer cost reduction through advances in materials technology and system simplification.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content