This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
At the hubs, which can be built at or near landfills, Raven SR will convert mixed and multiple organic wastes, including municipal solid waste, greenwaste, food waste, medical, paper, etc. Raven can also easily process natural and renewable gases alone or combined with solid waste. 22 CCR § 66260.10 Definitions).
Meanwhile, wet waste feedstocks, such as animal manure and fats, oils, and greases (FOG), represent another important category of resources that could be utilized to produce MCCI bioblendstocks due to its abundant availability. An open-access paper on their results is published in the journal ACS Sustainable Chemistry & Engineering.
Alfa Laval is introducing the E-PowerPack waste heat recovery system for ships. Able to convert waste heat directly into electrical power, the E-PowerPack uses Organic Rankine Cycle (ORC) technology to reduce ship fuel consumption and CO 2 emissions. The basic principle of an ORC system can be thought of as the opposite of a heat pump.
Idemitsu Kosan, one of Japan’s leading producers and suppliers of energy, has launched a feasibility study of clean hydrogen production in Japan generated from waste, including municipal waste. The goal is to launch a first hydrogen production facility around 2030 capable of processing 200-300 tons of waste per day.
The cathode pilot line’s first product, a mid-nickel grade of single-crystal cathode material (NMC622), produced using NOVONIX’s patent-pending, all-dry, zero-waste synthesis technology, matches the performance of leading cathode materials from existing suppliers in full-cell testing.
Washington State University researchers have developed an innovative way to convert waste polyethylene plastic to ingredients for jet fuel and other valuable products, making it easier and more cost-effective to reuse plastics. In the recycling industry, the cost of recycling is key. —Hongfei Lin.
The plant will feature SGH2’s technology, which will gasify recycled mixed paper waste to produce green hydrogen that reduces carbon emissions by two to three times more than green hydrogen produced using electrolysis and renewable energy, and is five to seven times cheaper. The facility will process 42,000 tons of recycled waste annually.
The funding will help Sierra Energy further develop and commercialize its FastOx gasification technology, which converts virtually any waste into clean, renewable energy and fuels without burning. Waste is fed into the top of the gasifier vessel through an airlock. Purified oxygen and steam are injected into the base.
A Rutgers-led team has developed a new biomass pretreatment process that could make it much cheaper to produce biofuels such as ethanol from plant waste and reduce reliance on fossil fuels. Similar processes could greatly reduce the cost of producing biofuels from waste biomass like corn stalks and leaves. Shishir P.
The US Department of Energy (DOE) announced up to $40 million in funding for a new Advanced Research Projects Agency-Energy (ARPA-E) program that will limit the amount of waste produced from advanced nuclear reactors, protecting the land and air and increasing the deployment and use of nuclear power as a reliable source of clean energy.
Here, we report the bulk-scale conversion of asphaltenes into a stable, naturally occurring form of carbon, namely, graphene, using a single-step, low-cost, energy-efficient, recyclable, scalable, and sustainable technique called flash joule heating (FJH). —Saadi et al.
A new approach developed by researchers at the Norwegian University of Science and Technology (NTNU) could alleviate that situation a bit by using waste heat from other industrial processes. Energy experts say that the waste heat from Norway’s businesses and industries is the equivalent of 20 TWh of energy. —Krakhella et al.
bp ventures has committed $10 million, leading the Series B investment round, in WasteFuel , a California-based biofuels company that will use proven, scalable technologies to convert bio-based municipal and agricultural waste into lower carbon fuels, such as biomethanol. billion metric tons by 2050.
ClearFlame Engine Technologies, a startup developing net-zero engine technology ( earlier post ), announced the publication of an independent study that finds ClearFlame’s technology could help fleet owners and other heavy-duty truck operators lower total costs while meeting sustainability goals sooner than currently available alternatives.
Hynamics, the hydrogen subsidiary of EDF group, has signed an agreement to collaborate with ABB and test the ABB Ability OPTIMAX for Green Hydrogen energy management system (EMS), which was launched to market in November 2022, across Hynamics’ plants to help optimize electrical costs of hydrogen production by up to 16%, according to ABB modeling.
the strategic investment arm of South Korea’s SK Group, was part of a $50-million investment in Fulcrum BioEnergy, a US-based waste-to-fuels company. Fulcrum produce biofuel on a commercial scale by chemically converting municipal solid waste (MSW) into transportation fuels.
The collaboration seeks to minimize the system’s capital and operating costs, as well as its environmental footprint, while maximizing economic opportunities for coal communities. The clean technologies powering the future depend on powerful rare earth magnets to turn energy into motion.
Rice University scientists and their colleagues at C-Crete Technologies have optimized a process to convert waste from rubber tires into graphene that can, in turn, be used to strengthen concrete. After useful oils are extracted from waste tires, this carbon residue has until now had near-zero value, Tour said. —James Tour.
A team of scientists from LanzaTech, Northwestern University and the Department of Energy’s Oak Ridge National Laboratory have engineered a microbe to convert molecules of industrial waste gases, such as carbon dioxide and carbon monoxide, into acetone and isopropanol (IPA). —Jennifer Holmgren, CEO of LanzaTech. In this case of C.
A patented process for converting alcohol sourced from renewable or industrial waste gases into jet or diesel fuel is being scaled up at the US Department of Energy’s Pacific Northwest National Laboratory with the help of partners at Oregon State University and the carbon-recycling experts at LanzaTech. —OSU lead researcher Brian Paul.
Fulcrum BioEnergy, a clean energy company pioneering the creation of renewable, drop-in transportation fuels from landfill waste, successfully produced a low-carbon synthetic crude oil using landfill waste as a feedstock at its Sierra BioFuels Plant, the world’s first commercial-scale landfill waste-to-fuels plant.
Since the fuel is chemically stable and the fission products are short-lived, this waste is radiologically similar to radioactive hospital waste and can be handled using conventional methods. The remaining fuel salt will be mixed into new CMSR fuel at the fuel supplying facility.
By sharing the Tre platform, we can drive the cost down for both programs by using the same parts. Republic Services is the second-largest recycling and solid waste provider in the US and is recognized as an industry leader in providing environmentally responsible, sustainable solutions to its customers. Nikola Refuse platform.
The National Circular Economy Roadmap found innovation is crucial to realizing Australia’s largest economic gains, which will come from designing new products and materials, including through advanced manufacturing, and in embracing new business models that will create domestic and export markets for waste streams. billion by 2036.
The new Service Station can save costs on hydrogen production, storage and transportation by more than 20% compared to traditional hydrogen refueling stations; it is intended to become a pilot model to lead the development of China's hydrogen energy industry. Sinopec Fuel Oil Sales Co., As part of Sinopec’s commitment to becoming China’s No.1
Under the terms of the agreement, XL Fleet and Curbtender will jointly develop a series of battery electric (BEV) and plug-in hybrid electric (PHEV) commercial trucks for use in waste management applications. The Quantum is the US Waste Industry’s #1 selling small rear loader. Curbtender Quantum.
Hydra’s ability to deploy stranded hydrogen assets to fleet operators, who can use it to reduce their fuel costs and meet emission targets, opens up new opportunities for chemical manufacturers. The company’s distinctive HaaS model helps commercial fleets reduce costs and emissions with limited risk and no up-front investment.
The composite blocks can be made from low-cost and locally sourced materials, including the excavated soil at the construction site, but can also utilize waste materials such as mine tailings, coal combustion residuals (coal ash), and fiberglass from decommissioned wind turbine blades. barrel per ton of feedstock.
BayoTech is committed to addressing the global need for consistent, cost-effective, low-carbon supply of hydrogen. The company is developing systems capable of producing 5,000 kg, 10,000 kg and 30,000 kg of hydrogen per day. Today, most hydrogen is produced at large, centralized facilities before being delivered to end users.
With a better understanding of the molecular structure and behavior of the material, we can create sorbents with greater throughput that could reduce the size and cost of plant construction, for instance, or develop variants that would work with lower-temperature brines.
Beyond that, the use of common bulk commodities such as manganese, iron and phosphorus reduces costs. VSPC’s active program to reduce costs even further includes its evaluation of industrial waste materials as feed, as well as the production of cathode-material precursors derived from spent LIBs.
The EU-funded research project HyFlexFuel recently successfully produced biocrudes via hydrothermal liquefaction (HTL) from a variety of biomasses, including sewage sludge, food waste, manure, wheat straw, corn stover, pine sawdust, miscanthus and microalgae in a pilot-scale continuous HTL plant at Aarhus University (Denmark).
On demand, the hydrogen is released from the hydride (endothermic reaction), utilizing the waste heat of the fuel cell. But concerns have been raised about the size, cost and safety of hydrogen storage in buses. Hydrogen is stored by reaction with a metal to form a hydride (exothermic reaction). From Adelhelm & Jongh (2011).
Ohio University’s Institute for Sustainable Energy and the Environment was awarded two of the six awards, one that explores how coal waste can be reimagined as energy storage and the second aims to develop ultra-conductive carbon metal composite wire for electric motors. The award from the DOE totals $1 million with a $250,000 cost share.
The company also believes this project may, in time, result in among the lowest-cost REE production in the western world, since the company is obtaining monazite from existing mining facilities in Georgia (and potentially elsewhere) and utilizing its existing White Mesa Mill processing facility in Utah. Energy Fuels currently has 1.5
DE-FOA-0002423 ) Topic Areas ins the FOA support DOE’s Bioenergy Technologies Office’s (BETO’s) objectives to reduce the minimum selling price of drop-in biofuels, lower the cost of biopower, and enable high-value products from biomass or waste resources.
DeepGreen Metals, which is exploring for deep-ocean polymetallic nodules as a lower impact and more cost-effective alternative to land-based mining ( earlier post ), announced an upward revision to the nodule resource reported within the NORI-D exploration contract area held by its subsidiary, Nauru Ocean Resources, Inc.
It will also establish biomass supply chains to improve logistics for the collection, supply and distribution of biomass materials, such as forest residues, municipal solid waste and agriculture crop residues, as well as the development of essential codes and standards.
a Finnish energy company, have signed an agreement on a joint concept feasibility study for a Power-to-Gas facility at Vantaa Energy’s waste-to-energy plant in the city of Vantaa in the capital region. The technology group Wärtsilä and Vantaa Energy Ltd., The co-development agreement was signed in May and is valid for 12 months.
The above-ground design requires minimal disruption to existing parking lots by eliminating costly, time-consuming, and substantial civics works and reduces on-site construction waste and environmental impact.
The biocrude oil came from many different sources, including wastewater sludge from Detroit, and food waste collected from prison and an army base. The research showed that essentially any biocrude, regardless of wet-waste sources, could be used in the process and the catalyst remained robust during the entire run.
Importantly for the customer, the X15N will reduce the cost of adopting low emissions technologies for their fleet, and gives them the confidence to do so, built on the strong foundation of more than 30 years of experience with natural gas. The new X15N is capable of lower NO x levels than the 2024 EPA and CARB standards.
Waste into X (WiX); $5.0 With nearly 2 billion tons of municipal solid waste (MSW) generated globally, this feedstock may constitute the largest resource for the recovery of CMs and other metals. Schematic showing the solid streams in ARPA-E’s conceptualization of zero waste going to landfill. million; 1-5 awards.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content