This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
While there is global potential to generate renewable energy at costs already competitive with fossil fuels, a means of storing and transporting this energy at a very large scale is a roadblock to large-scale investment, development and deployment. Generation 2 moves the Haber-Bosch process to renewable sources of hydrogen.
Electrolytic hydrogen production powered by renewable energy is seen as an environmentally friendly means to ameliorate global climate and energy problems. Both half reactions of water electrolysis—hydrogen and oxygen evolution—are unfortunately slow and require a lot of power. Zhang, S.L., and Lou, X.W.
Darling and Valero jointly announced that their 50/50 joint venture, Diamond Green Diesel (DGD), has received approval from both companies’ Boards of Directors to proceed with the construction of the renewable diesel production facility to be located at Valero’s Port Arthur, Texas refinery. The current estimated construction cost is $1.45
million for the next phase of Gigastack, a new renewable hydrogen project, as part of the Department for Business, Energy and Industrial Strategy (BEIS) Hydrogen Supply Competition. Producing hydrogen has traditionally been associated with high carbon emissions, but by using renewable electricity—e.g., The UK has awarded £7.5
The FH2R can produce as much as 1,200 Nm 3 of hydrogen per hour (rated power operation) using renewable energy. Renewable energy output is subject to large fluctuations, so FH2R will adjust to supply and demand in the power grid in order to maximize utilization of this energy while establishing low-cost, Green hydrogen production technology.
Green hydrogen, which is produced using an electrolyzer powered by renewable electricity to split water into hydrogen and oxygen, is expected to play an important role in the energy transition in coming decades with overall hydrogen demand expected to grow 5-7x over the next 30 years according to the Hydrogen Council.
In a commentary in the journal Joule , Rob McGinnis, founder and and CEO of Prometheus , a company that is developing technology to remove carbon dioxide from the air and turn it into fuels, discusses the technology advances that could lead to the potential price-competitiveness of renewable gasoline and jet with fossil fuels. 2020.01.002.
a provider of long duration energy storage solutions, and Encore Renewable Energy, a developer of renewable energy generation and storage projects, jointly announced plans to develop the United States’ first long-duration, liquid-air energy storage system. Highview Power Storage, Inc.,
the developer of a technology to produce renewable hydrogen using sunlight and water ( earlier post ), is working with Suzhou GH New Energy Co. Gen 2 will use easily scalable low-cost electrochemical processing for manufacturing multi-junction nanoparticles for PEC production of hydrogen. HyperSolar, Inc.,
Hydrogen produced using renewable energy could become a cost-competitive option over that made from natural gas within the decade, according to a new analysis from IHS Markit.
thyssenkrupp’s proprietary water electrolysis technology for the production of. Our plants are thus making a significant contribution to ensuring both a stable power supply and the cost-effectiveness of green hydrogen. green hydrogen meets the requirements for participation in the primary control reserve market. thyssenkrupp and E.ON
The US Department of Energy (DOE) selected the National Alliance for Water Innovation (NAWI) to lead a US Department of Energy (DOE) Energy-Water Desalination Hub that will address water security issues in the United States. This suite of technologies will treat “non-traditional” water sources for multiple end-use applications.
By using a water-lean post-combustion capture solvent, (N-(2-ethoxyethyl)-3-morpholinopropan-1-amine) (2-EEMPA), they achieved a greater than 90% conversion of captured CO 2 to hydrocarbons—mostly methane—in the presence of a heterogenous Ru catalyst under relatively mild reaction conditions (170 °C and 2 pressure). Heldebrant, D.,
Heliogen’s AI-enabled concentrated solar energy system is designed to create carbon-free steam, electricity, and heat from abundant and renewable sunlight. Electricity accounts for nearly 80% of the cost of hydrogen from electrolysis. By using less electricity, hydrogen production is more economical and accelerates adoption.
One path to achieving this is with renewable synthetic fuels (e-fuels). Bosch outlines seven reasons why renewable synthetic fuels should be part of tomorrow’s mobility mix: Time. Renewable synthetic fuels have long since left the basic research phase. emitted by burning renewable synthetic fuels is reused to produce new fuels.
In an open access paper published in Nature Communications , researchers from the University of Wollongong in Australia report that their capillary-fed electrolysis cell demonstrates water electrolysis performance exceeding commercial electrolysis cells, with a cell voltage at 0.5 2 and 85 °C of only 1.51 kWh/kg hydrogen (vs. Hodges et al.
Berlin-based Graforce Hydro GmbH, the developer of a plasma electrolyzer—the Plasmalyzer —is applying its technology for the highly efficient generation of hydrogen from industrial waste water. The technology we’ve developed is capable of cleaning wastewater and producing a low-cost, low-emission fuel from it.
Libertine says that free-piston range-extender engines can offer the efficiency of fuel cells, the durability of conventional engines and achieve carbon reductions using renewable fuels. This technology enables improved cold start performance using wet or ‘hydrous’ bioethanol fuel, a blend of 90% bioethanol and 10% water (E90W10).
The technology developed by the UBC researchers—thermal methane cracking (TMC)—can produce up to 200 kilograms of hydrogen a day using natural gas, without using water, while reducing or eliminating greenhouse gas emissions. Currently, hydrogen can cost up to $15 per kilogram. Image: MéridaLabs.
In addition to hydrogen, other potential renewable fuels are being studied for future applications, and Wärtsilä engines are already capable of combusting 100% synthetic carbon-neutral methane and methanol. Hydrogen as part of the renewable electricity system of the future.
According to early analysis, the cost target of the new technology is half that of current electrolyzers and the total cost of ownership over its life is expected to be 75% less. Less expensive technologies such as this can start a “virtuous cycle” of cost reductions, increased scale-up, and further cost reductions in turn.
Minneapolis-based Xcel Energy will work with Idaho National Laboratory to demonstrate a system that uses a nuclear plant’s steam and electricity to split water. —Richard Boardman, national technical lead for the DOE Light Water Reactor Sustainability Program’s Flexible Plant Operations and Generation Pathway. Earlier post.)
and HCS Group GmbH, a long-time customer of Gevo, have signed a project memorandum of understanding (MOU) to develop and to build a renewable hydrocarbon facility at HCS Group’s site located in Speyer, Germany, which would utilize Gevo’s low-carbon sustainable aviation fuel (SAF) technology: Alcohol-to-Jet Synthetic Paraffinic Kerosene.
Westinghouse Electric Company launched its newest nuclear technology, the AP300 small modular reactor (SMR), a 300-MWe (900MWth) single-loop pressurized water reactor. Flexible performance provides a proven capability to stabilize modern renewable heavy electric grids, including fast load change capabilities to support variations in demand.
UGI Corporation has entered into a 15-year agreement with California-based technology developer Vertimass to utilize their catalytic technology to produce renewable fuels from renewable ethanol in the US and Europe. Possibly debottleneck processes to increase throughput with little additional costs other than for feedstock.
Energy Vault, a company developing grid-scale gravity energy storage solutions, has entered into an energy storage system agreement with DG Fuels, a developer of renewable hydrogen and biogenic-based, synthetic sustainable aviation fuel (SAF) and diesel fuel. Under the terms of the agreement, Energy Vault agreed to provide 1.6
In collaboration with NE, DOE’s Hydrogen and Fuel Cell Technologies Office will provide funding and project oversight for the two hydrogen production–related projects that were selected: General Electric Global Research, Scaled Solid Oxide Co-Electrolysis for Low-Cost Syngas Synthesis from Nuclear Energy.
Available to customers as OXEFUEL, OXCCU’s sustainable aviation fuel is created by combining captured carbon dioxide and renewably-sourced green hydrogen through a novel iron-based catalyst, resulting in a more cost-effective and decarbonized alternative to fossil-based jet fuel for commercial airlines.
Researchers from the US Department of Energy’s (DOE) Argonne National Laboratory have combined two membrane-bound protein complexes to perform a complete conversion of water molecules to hydrogen and oxygen. The new cobalt or nickel catalysts could significantly reduce potential costs. Utschig, Sarah R. Soltau, Karen L.
million to 16 water infrastructure projects. Modern technology has the potential to reduce energy use in aging water infrastructure, particularly in wastewater treatment, which demands up to 2% of domestic electricity use each year. The US Department of Energy (DOE) is awarding $27.5
Hydrokinetic energy is an abundant renewable resource that can boost grid resiliency and reduce infrastructure vulnerability, but it is currently a cost prohibitive option compared to other energy generating sources. These methodologies will significantly decrease the levelized cost of energy (LCOE) of the final HKT design.
physically moving the macroalgae between deep nutrient-rich water at night and shallow depths within the photic zone during the day to optimize growth. An open-access paper on their work appears in the journal Renewable and Sustainable Energy Reviews. The researchers used a depth-cycling approach—i.e.,
The Western Australia Government of Premier Mark McGowan will bring forward the Western Australian Renewable Hydrogen Strategy targets by a decade and invest $22 million to develop hydrogen supply, meet growing demand for the clean fuel and create jobs. The McGowan Government has committed $5.7
Researchers from the Chinese Academy of Sciences and Tsinghua University have used a gallium, indium, tin and bismuth alloy to generate hydrogen, when placed in contact with an aluminum plate immersed in water. An open-access paper on their work appears in the Journal of Renewable and Sustainable Energy , from AIP Publishing.
(SoCalGas) will soon begin using renewable natural gas for the first time at the 25 utility-owned natural gas vehicle fueling stations across its service territory, as well as at six fueling stations in the San Diego area. California provides incentive funding to help trucking fleets transition to renewable natural gas.
Costs for producing green hydrogen have fallen 50% since 2015 and could be reduced by an additional 30% by 2025 due to the benefits of increased scale and more standardized manufacturing, among other factors. Economies of scale are a primary driver for green hydrogen’s growing cost competitiveness.
ENEOS Corporation has constructed a demonstration plant in Brisbane, Australia, to produce methylcyclohexane (MCH), a liquid organic hydrogen carrier (LOHC), using its proprietary low-cost electrochemical synthesis of organic hydride method Direct MCH. Eneos’ Direct MCH uses an electrolyzer to produce MCH directly from water.
Utilization of renewable solar energy is crucial for addressing the global energy and environmental concerns and achieving sustainable development. In this regard, photocatalytic water splitting has attracted significant interest as a cost-effective means to convert sustainable solar energy into valuable chemicals. Credit: DICP.
project for industrial-scale production of green hydrogen via the electrolysis of water using ?renewable renewable power, producing zero emissions. This will be powered by renewable energy generated by an Ørsted offshore ? Electrolysis splits water into hydrogen and oxygen gases. When powered by renewable ?energy,
The decarbonization of the transportation sector will require large volumes of renewable fuels. So far, renewable diesel and jet fuels are mainly derived from plant oils, but the EU Renewable Energy Directive limits the use of biofuel from food and feed crops since they do not meet sustainability requirements when produced at large scale.
These changes eliminate the need for carbon sequestration and reduce the system’s feed-stock handling costs and complexity. The feed-stock reduction is achieved primarily by supplementing the process with oxygen and hydrogen produced by water electrolysis units that are powered by clean wind and solar generated electricity.
AW-Energy says that its wave energy device, when combined with other renewable energy sources, can enable significant green hydrogen cost reductions and is a viable solution in the drive to execute the world’s clean energy hydrogen roadmap. Wave energy holds the greatest potential to generate constant low-cost green hydrogen.
H2Pro is developing a new way of producing hydrogen from water. Similar to electrolysis, its technology, E-TAC (Electrochemical – Thermally Activated Chemical)—developed at Technion, Israel Institute of Technology—uses electricity to split water into hydrogen and oxygen. HHV) inside the reactors and a 95% system efficiency.
These opportunities could drive the production of valuable fuels, chemicals, and products, provide greater cost savings, increase grid flexibility, and enhance environmental performance across a range of DOE-funded technologies. using electrical or thermal energy to produce hydrogen from water or a methane source). Source: DOE.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content