This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers led by engineers at The University of Texas at El Paso (UTEP) have proposed a low-cost, cactus-inspired nickel-based material to help split water more cheaply and efficiently. Nickel, however, is not as quick and effective at breaking down water into hydrogen. who led the study.
The nanostructured photoelectrode results in spontaneous hydrogen evolution from water without any external bias applied with a faradaic efficiency of 30% and excellent stability. The greatest challenge is to develop a suitable technology for large scale and cost effective solar fuel production to compete with fossil fuel.
Renewable energy output is subject to large fluctuations, so FH2R will adjust to supply and demand in the power grid in order to maximize utilization of this energy while establishing low-cost, Green hydrogen production technology.
Michael Grätzel at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland has developed a highly efficient and low-costwater-splitting cell combining an advanced perovskite tandem solar cell and a bi-functional Earth-abundant catalyst. Splitting water requires an applied voltage of at least 1.23 V and up to 1.5
volts (V) of water-splitting voltage with its novel low-cost electrolysis technology. The theoretical minimum voltage needed to split water molecules into hydrogen and oxygen is 1.23 Nanosystem for water electrolysis. This lowers the system cost of what is essentially an electrolysis process.
When combined with Bloom’s proprietary solid oxide, high-temperature electrolyzer, hydrogen can be produced 45% more efficiently than low-temperature PEM and alkaline electrolyzers. Electricity accounts for nearly 80% of the cost of hydrogen from electrolysis. Source: Heliogen.
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4. The conversion rate reaches 32.9 ± 1.38
Researchers at Stanford University, with colleagues at Oak Ridge National Laboratory and other institutions, have developed a nickel-based electrocatalyst for low-costwater-splitting for hydrogen production with performance close to that of much more expensive commercial platinum electrocatalysts. Click to enlarge.
Rice University researchers have created an efficient, low-cost device that splits water to produce hydrogen fuel. The current flows to the catalysts that turn water into hydrogen and oxygen, with a sunlight-to-hydrogen efficiency as high as 6.7%. It utilizes water and sunlight to get chemical fuels. 9b09053.
Researchers at Southwest Research Institute (SwRI) and The University of Texas at San Antonio (UTSA) have determined that biochar, a substance produced from plant matter, is a safe, effective and inexpensive method to treat flowback water following hydraulic fracturing, or fracking. —Maoqi Feng, SwRI. —Zhigang Feng, USTA.
In a paper in Nature , they suggest that the use of such redox-active organic molecules instead of redox-active metals represents a new and promising direction for realizing massive electrical energy storage at greatly reduced cost. The design permits larger amounts of energy to be stored at lower cost than with traditional batteries.
By using a water-lean post-combustion capture solvent, (N-(2-ethoxyethyl)-3-morpholinopropan-1-amine) (2-EEMPA), they achieved a greater than 90% conversion of captured CO 2 to hydrocarbons—mostly methane—in the presence of a heterogenous Ru catalyst under relatively mild reaction conditions (170 °C and 2 pressure). Heldebrant, D.,
Stuart Licht have demonstrated the first facile high-yield, low-energy synthesis of macroscopic length carbon nanotubes (CNTs)—carbon nanotube wool—from CO 2 using molten carbonate electrolysis ( earlier post ). This synthesis consumes only CO 2 and electricity, and is constrained only by the cost of electricity.
The use of 3D printing allows construction of light-weight, low-cost electrolyzers and the rapid prototyping of flow field design. Flow plates which separate each cell in the electrolyzer stack and which are machined with a flow path for circulation of the water. The tam calculated that the 3D printed component would cost $0.17
Researchers from the Karlsruhe Institute of Technology (KIT) and their Canadian partners have designed a low-cost photoreactor design for solar-driven synthesis. The photoreactors have a low level of complexity, are readily manufacturable via mass fabrication techniques in polymers, and are easy to adapt to diverse photocatalysts.
Iron and nickel, which are found in abundance on Earth, would replace precious metals ruthenium, platinum and iridium that up until now are regarded as benchmark catalysts in the water-splitting process. —Suryanto et al. —Prof Zhao. Iron and nickel are currently priced at $0.13 and $19.65 a kilogram. and $69.58 Suryanto et al.
Researchers at Washington State University, with colleagues at Argonne National Laboratory and Pacific Northwest National Laboratory, have combined inexpensive nickel and iron in a very simple, five-minute process to create large amounts of a high-quality catalyst required for water splitting. SEM image of NiFe nanofoams. Source: WSU.
The new electrocatalyst can be produced at large scale and lowcost, providing a new paradigm in a wide application of hydrogen production by electrochemical reaction in future. Their high costs and scarcity hinder the development and applications of this hydrogen production method. Source: CityU. —Professor Liu.
The new material is simple to make, requiring primarily off-the-shelf melamine powder—which today costs about $40 per ton—along with formaldehyde and cyanuric acid, a chemical that, among other uses, is added with chlorine to swimming pools. The lowcost of porous melamine means that the material could be deployed widely.
There is an accompanying need to develop new low-cost and low-carbon technologies for hydrogen production. Aurora Hydrogen is scaling its proprietary and highly efficient microwave pyrolysis technology to produce hydrogen and solid carbon from natural gas without generating CO 2 emissions or consuming water.
A multi-institutional team led by the US Department of Energy’s (DOE) Argonne National Laboratory (ANL) has developed a low-cost cobalt-based catalyst for the production of hydrogen in a proton exchange membrane water electrolyzer (PEMWE). volts (Nafion 212 membrane) and low degradation in an accelerated stress test.
Berlin-based Graforce Hydro GmbH, the developer of a plasma electrolyzer—the Plasmalyzer —is applying its technology for the highly efficient generation of hydrogen from industrial waste water. The technology we’ve developed is capable of cleaning wastewater and producing a low-cost, low-emission fuel from it.
Researchers from the University of Houston (UH) have developed a cobalt(II) oxide (CoO) nanocrystalline catalyst that can carry out overall water splitting with a solar-to-hydrogen efficiency of around 5%. The generation of hydrogen from water using sunlight could potentially form the basis of a clean and renewable source of energy.
This is not, however, simply a case of reengineering the technology currently optimized for high-pressure conversion of syngas into methanol, because a low-pressure CO 2 reduction process may require a different catalyst. The syngas is then converted into methanol in a high-pressure process using a catalyst made of copper, zinc and aluminum.
ARPA-E’s new program, Robust Affordable Next Generation Energy Storage Systems (RANGE) ( earlier post ), aims to accelerate widespread EV adoption by dramatically improving driving range and reliability, and by providing low-cost, low-carbon alternatives to today’s vehicles. University of Houston. Long-Life, Acid-Based Battery.
Researchers from the University of North Carolina have synthesized high-photovoltage multijunction Si nanowires (SiNWs) that are co-functionalized to split water catalytically. When integrated with the co-catalysts and suspended in water, these light-activated nanoreactors produced hydrogen gas under visible and infrared light.
In collaboration with NE, DOE’s Hydrogen and Fuel Cell Technologies Office will provide funding and project oversight for the two hydrogen production–related projects that were selected: General Electric Global Research, Scaled Solid Oxide Co-Electrolysis for Low-Cost Syngas Synthesis from Nuclear Energy.
Developing energy- and time-saving methods to synthesize active and stable oxygen evolving catalysts is of great significance to hydrogen production from water electrolysis, which however remains a grand challenge. That requires substantial amounts of energy and drives up the cost. —Yu et al. —Zhifeng Ren.
Bamboo, the composition of which is highly similar to energy grasses used for biofuel production such as switchgrass, is an interesting potential feedstock for advanced bioethanol production in China due to its natural abundance, rapid growth, perennial nature and low management requirements. Littlewood et al. Click to enlarge.
ENEOS Corporation has constructed a demonstration plant in Brisbane, Australia, to produce methylcyclohexane (MCH), a liquid organic hydrogen carrier (LOHC), using its proprietary low-cost electrochemical synthesis of organic hydride method Direct MCH. Eneos’ Direct MCH uses an electrolyzer to produce MCH directly from water.
Importantly for scalability, the cell-level cost of the aluminum–sulfur battery is projected to be less than one-sixth that of current lithium-ion technologies.
The mesh with BiVO 4 nanowire photoanode for water oxidation and Rh-SrTiO 3 nanowire photocathode for water reduction produces hydrogen gas without an electron mediator. an “artificial leaf” to produce hydrogen—based on a nanowire mesh that lends itself to large-scale, low-cost production. Credit: ACS, Liu et al.
Hydrokinetic energy is an abundant renewable resource that can boost grid resiliency and reduce infrastructure vulnerability, but it is currently a cost prohibitive option compared to other energy generating sources. These methodologies will significantly decrease the levelized cost of energy (LCOE) of the final HKT design.
H2Pro is developing a new way of producing hydrogen from water. Similar to electrolysis, its technology, E-TAC (Electrochemical – Thermally Activated Chemical)—developed at Technion, Israel Institute of Technology—uses electricity to split water into hydrogen and oxygen. HHV) inside the reactors and a 95% system efficiency.
Researchers from the Chinese Academy of Sciences and Tsinghua University have used a gallium, indium, tin and bismuth alloy to generate hydrogen, when placed in contact with an aluminum plate immersed in water. Al is a favored hydrogen generation material because of its relatively lowcost, low density, and abundant geological reserves.
the developer of a technology to produce renewable hydrogen using sunlight and water ( earlier post ), is working with Suzhou GH New Energy Co. Gen 2 will use easily scalable low-cost electrochemical processing for manufacturing multi-junction nanoparticles for PEC production of hydrogen. HyperSolar, Inc.,
AW-Energy says that its wave energy device, when combined with other renewable energy sources, can enable significant green hydrogen cost reductions and is a viable solution in the drive to execute the world’s clean energy hydrogen roadmap. Wave energy holds the greatest potential to generate constant low-cost green hydrogen.
reports that its zinc-ion-based ZIP-Cap asymmetric ultracapacitor is expected to provide a 25-fold reduction in build cost and a 5-fold increase in energy density (up to 35Wh/L) without the ultra-pure materials or expensive “dry-room” facilities that are necessary to build today’s ultracapacitors. Source: Ionova. Click to enlarge.
This permits the control of the rotary reformer when there is water content or chemical makeup variation in the feedstock, such as in MSW. Raven can also control the temperature gradient along the axis of the rotary reformer from 300 °F (149 ?C) C) at the front up to 1,200°F at the exit end.
The US Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) announced $11 million in funding for 7 projects in the fourth and fifth cohorts of the agency’s OPEN+ program: Energy-Water Technologies and Sensors for Bioenergy and Agriculture. Energy-Water Technologies cohort.
With efficiencies above 90%, Topsoe’s proprietary SOEC electrolyzers offer superior performance in electrolysis of water into hydrogen—e.g., The SOEC is a ceramic cell that uses electricity to split water molecules (H 2 O) into hydrogen (H 2 ) and oxygen (O 2 ). —Hauch et al. E tn , thermoneutral potential. Hauch et al.
Energy Vault’s advanced gravity energy storage solutions are based on the proven physics and mechanical engineering fundamentals of pumped hydroelectric energy storage, but replace water with custom-made composite blocks, or “mobile masses”, which do not lose storage capacity over time.
from an offshore wind farm—the process of producing hydrogen from water (electrolysis) can be decarbonized. Creating renewable hydrogen with offshore wind really has the potential to decarbonize industrial processes, and what is needed now is to scale up the electrolyzer technology and bring the cost down.
The projects will feature collaborations with EERE’s Advanced Manufacturing Office on manufacturing reliable and affordable electrolyzers and with EERE’s Vehicle Technologies Office on developing low-cost, high-strength carbon fiber for hydrogen storage tanks. Carbon Composite Optimization Reducing Tank Cost. Giner ELX Inc.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content