Remove Cost Remove Low Cost Remove Water
article thumbnail

UT El Paso-led team designs cactus-inspired low-cost, efficient water-splitting catalyst

Green Car Congress

Researchers led by engineers at The University of Texas at El Paso (UTEP) have proposed a low-cost, cactus-inspired nickel-based material to help split water more cheaply and efficiently. Nickel, however, is not as quick and effective at breaking down water into hydrogen. who led the study.

El Paso 459
article thumbnail

Exeter team develops low-cost photoelectrode for spontaneous water-splitting using sunlight

Green Car Congress

The nanostructured photoelectrode results in spontaneous hydrogen evolution from water without any external bias applied with a faradaic efficiency of 30% and excellent stability. The greatest challenge is to develop a suitable technology for large scale and cost effective solar fuel production to compete with fossil fuel.

Water 342
article thumbnail

Fukushima Hydrogen Energy Research Field (FH2R) completed in Japan; aiming for low-cost green hydrogen production; P2G

Green Car Congress

Renewable energy output is subject to large fluctuations, so FH2R will adjust to supply and demand in the power grid in order to maximize utilization of this energy while establishing low-cost, Green hydrogen production technology.

Low Cost 450
article thumbnail

EPFL team develops low-cost water splitting cell with solar-to-hydrogen efficiency of 12.3%

Green Car Congress

Michael Grätzel at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland has developed a highly efficient and low-cost water-splitting cell combining an advanced perovskite tandem solar cell and a bi-functional Earth-abundant catalyst. Splitting water requires an applied voltage of at least 1.23 V and up to 1.5

Low Cost 278
article thumbnail

HyperSolar reaches 1.25 V for water-splitting with its self-contained low-cost photoelectrochemical nanosystem

Green Car Congress

volts (V) of water-splitting voltage with its novel low-cost electrolysis technology. The theoretical minimum voltage needed to split water molecules into hydrogen and oxygen is 1.23 Nanosystem for water electrolysis. This lowers the system cost of what is essentially an electrolysis process.

Low Cost 246
article thumbnail

Heliogen and Bloom Energy demonstrate production of low-cost green hydrogen; concentrated solar and high-temp electrolysis

Green Car Congress

When combined with Bloom’s proprietary solid oxide, high-temperature electrolyzer, hydrogen can be produced 45% more efficiently than low-temperature PEM and alkaline electrolyzers. Electricity accounts for nearly 80% of the cost of hydrogen from electrolysis. Source: Heliogen.

Low Cost 397
article thumbnail

Stanford researchers make ammonia from air and water microdroplets

Green Car Congress

Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4. The conversion rate reaches 32.9 ± 1.38

Water 459