This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers from Japan’s NIMS (National Institute for Materials Science), the University of Tokyo and Hiroshima University have jointly conducted a techno-economic analysis for hydrogen production from photovoltaic power generation (PV) utilizing a battery-assisted electrolyzer. This approximately converts to US$1.92 to US$3.00/kg
volts (V) of water-splitting voltage with its novel low-cost electrolysis technology. HyperSolar’s research is centered on developing a low-cost and submersible hydrogen production particle that can split water molecules using sunlight, emulating the core functions of photosynthesis. HyperSolar, Inc. V (at 25 °C at pH 0).
Researchers at George Washington University led by Dr. Stuart Licht have demonstrated the first facile high-yield, low-energy synthesis of macroscopic length carbon nanotubes (CNTs)—carbon nanotube wool—from CO 2 using molten carbonate electrolysis ( earlier post ). —Johnson et al.
A team led by Dr. Michael Grätzel at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland has developed a highly efficient and low-cost water-splitting cell combining an advanced perovskite tandem solar cell and a bi-functional Earth-abundant catalyst. Currently, perovskite instability limits the cell lifetime.)
Researchers at Stanford University, with colleagues at Oak Ridge National Laboratory and other institutions, have developed a nickel-based electrocatalyst for low-cost water-splitting for hydrogen production with performance close to that of much more expensive commercial platinum electrocatalysts. Credit: Gong et al.
The lowcost of porous melamine means that the material could be deployed widely. Haiyan Mao, a UC Berkeley postdoctoral fellow who is first author of the paper, said that melamine-based materials use much cheaper ingredients, are easier to make and are more energy efficient than most MOFs.
Researchers from the University of Houston (UH) have developed a cobalt(II) oxide (CoO) nanocrystalline catalyst that can carry out overall water splitting with a solar-to-hydrogen efficiency of around 5%. They report on their work in a paper in the journal Nature Nanotechnology.
LeMond Composites, founded by three-time Tour de France champion Greg LeMond, has licensed a low-cost, high-volume carbon fiber manufacturing process developed at the US Department of Energy’s Oak Ridge National Laboratory (ORNL). Earlier post.) The first commercially available product will be ready in Q1 of 2018.
and the University of Houston will work together to further understanding of the geology and composition of crude oil. In addition, improvements in the methods used to characterize crude oil will allow it to be processed more efficiently, which can improve the yield from each barrel and lower the cost of refined products.
ARPA-E’s new program, Robust Affordable Next Generation Energy Storage Systems (RANGE) ( earlier post ), aims to accelerate widespread EV adoption by dramatically improving driving range and reliability, and by providing low-cost, low-carbon alternatives to today’s vehicles. University of Houston. Princeton University.
Researchers from Fudan University in China and Technische Universität Chemnitz in Germany have developed an aqueous rechargeable lithium battery (ARLB) using coated Li metal as the anode. Lower cost of production, using well-known materials. mol l -1 Li 2 SO 4 aqueous solution as electrolyte. Wang et al. Click to enlarge.
The research projects, conducted in partnership with private industry, national laboratories and universities, support the Energy Department’s SunShot Initiative, a collaborative national effort to make solar power cost-competitive with traditional energy sources by the end of the decade. CSP awards.
The Nitto Denko, Kobe University project is entitled “R&D into Polymer Membrane-integrated System for Distillation and Dehydration of Cellulosic Bioethanol”.
These methodologies will significantly decrease the levelized cost of energy (LCOE) of the final HKT design. The University of Michigan. The University of Michigan proposes the RAFT concept as a solution for hydrokinetic energy harvesting. It has a low maintenance cost, resulting in a lower cost of energy.
SunHydrogen , the developer of a technology to produce renewable hydrogen using sunlight and water, has extended its sponsored research agreement with the University of Iowa through 31 August 2020. The University of Iowa has been a key and productive partner in the development of our GEN 1 panels.
Companies such as Novozymes have worked for years to reduce the cost and improve the efficiency of their enzymes for this type of application. Now, researchers at the University of Central Florida have developed a tobacco plant-derived cocktail of enzymes for the efficient hydrolysis of a range of lignocellulosic biomass.
Researchers at the University of Bristol (UK) have developed a new family of catalysts that enables the conversion of ethanol into n-butanol—a higher alcohol with better characteristics for transportation applications than ethanol—with selectivity of more than 95% at good conversion. —Professor Duncan Wass.
The 14 projects selected for the SWITCHES program are performing their research at a combination of universities, businesses, and national labs. If successful, Avogy’s transistors will enable smaller, more reliable, energy-efficient, and cost-effective high-power converters, electrical motor drives, and photovoltaic and wind inverters.
The average cost to trial participants for recharging at home is between 25p and £1 (US$0.40 The data analyzed by Aston University combines and compares the behavior patterns of 25 Mitsubishi i-MiEV drivers over two consecutive quarters. The lowcost of ‘refuelling’ in relatively short periods of time reinforce this.
The project will result in a unique battery system that features superior energy density, lowcost, increased cycles and reduced critical materials. The financial objective is to achieve a cost of no more than €90/kWh at the pack level when entering commercial production. Useful cycle life of >2000. >4.5V
Source: Umeå University. Historically, platinum and its alloys have frequently been used as anodic and cathodic catalysts in fuel cells, but the high cost of platinum, due to its low abundance, has motivated researchers to find efficient catalysts based on earth-abundant elements. Click to enlarge.
A consortium of Progressive Energy, Essar, Johnson Matthey, and SNC-Lavalin will deliver the project comprising the development of a 100,000 Nm 3 per hour clean hydrogen production facility for deployment as part of the HyNet Cluster, using Johnson Matthey’s low-carbon hydrogen technology which enables carbon capture and storage. million).
Over time, it has improved the efficiency and aggressively reduced the cost of its products and expects this trend to continue. Generating low-cost hydrogen from intermittent renewables is a sine qua non for decarbonization. Generating low-cost hydrogen from intermittent renewables is a sine qua non for decarbonization.
Partners in this project of the Federal Ministry of Transport and the German National Organization for Hydrogen and Fuel Cell Technology (NOW - Nationale Organisation für Wasserstoff- und Brennstoffzellentechnologie) are the car manufacturer BMW, the University of Siegen and other suppliers.
University of Hawaii of Honolulu, Hawaii will receive $3 million to develop photoelectrodes for direct solar water splitting. University of Colorado, Boulder of Boulder, Colorado will receive $2 million to develop a novel solar-thermal reactor to split water with concentrated sunlight. FuelCell Energy Inc.
Researchers at Columbia University are investigating the use of membraneless electrochemical flow cells for hydrogen production from water electrolysis that are based on angled mesh flow-through electrodes. The high cost of electrolyzers arises from the high costs of individual components (e.g., —O’Neil et al.
Researchers from the Chinese Academy of Sciences and Tsinghua University have used a gallium, indium, tin and bismuth alloy to generate hydrogen, when placed in contact with an aluminum plate immersed in water. Al is a favored hydrogen generation material because of its relatively lowcost, low density, and abundant geological reserves.
Researchers at the University of Delaware, with a colleague at the Beijing University of Chemical Technology, have developed a composite catalyst—nickel nanoparticles supported on nitrogen-doped carbon nanotubes—that exhibits hydrogen oxidation activity in alkaline electrolyte similar to platinum-group metals.
The US Department of Energy (DOE) will award more than $5 million to two projects—one led by 3M Company and the other by Eaton Corporation—intended to lower the cost of advanced fuel cell systems by developing and engineering cost-effective, durable, and highly efficient fuel cell components. 3M Company, up to $3.1
The projects conducted through this program are geared toward reducing the cost of coal conversion and mitigating the environmental impacts of fossil-fueled power generation. Montana State University. DOE: $650,000 Non DOE: $162,500 Total: $812,500 (20% cost share). The Pennsylvania State University. Lead organization.
The projects selected are located in 25 states, with 50% of projects led by universities, 23% by small businesses, 12% by large businesses, 13% by national labs, and 2% by non-profits. University of Massachusetts, Amherst. Development of a Dedicated, High-Value Biofuels Crop The University of Massachusetts, Amherst will develop an.
measurement capabilities and lowering the cost of electric. cost associated with thermal management. Utah State University. Utah State University will develop electronic hardware and. Pennsylvania State University. Pennsylvania State University is developing an innovative. Washington University.
Researchers at Washington State University, with colleagues at Argonne National Laboratory and Pacific Northwest National Laboratory, have combined inexpensive nickel and iron in a very simple, five-minute process to create large amounts of a high-quality catalyst required for water splitting.
A team of scientists from Penn State and Florida State University have developed a lower cost and industrially scalable catalyst consisting of synthesized stacked graphene and W x Mo 1–x S 2 alloy phases that produces pure hydrogen through a low-energy water-splitting process.
This program aims to lower the cost of GTL conversion while enabling the use of low-cost, low-carbon, domestically sourced natural gas. If successful, LBNL’s process will enable low-cost, energy-efficient fuel production from natural gas. Northwestern University. Pennsylvania State University.
Tennessee Technological University. AOI 3: Reducing the Cost of DC Fast Charging Equipment. Technology & Design Innovations to Maximize the Reduction Effect on DCFC Unit Cost Economics (Max-REDUCE). A Solid State Technology Enabled Compact, Modular Design to Reduce DC Fast Charging Cost and Footprint. BorgWarner Inc.
A team led by Dr. Stuart Licht at The George Washington University in Washington, DC has developed a low-cost, high-yield and scalable process for the electrolytic conversion of atmospheric CO 2 dissolved in molten carbonates into carbon nanofibers (CNFs.) —Stuart Licht.
Friend Family Distinguished Professor of Engineering, have been exploring the use of low-cost materials to create rechargeable batteries that will make energy storage more affordable. So if we have a longer service life, then this cost will be further reduced. They also have a very long cycle life.
These university-industry partnerships will receive almost $34 million in total project support. The newly funded projects are: Low Platinum PEM Fuel Cells. This project is led by Steven Holdcroft, Simon Fraser University, in partnership with Automotive Fuel Cell Corporation, Ballard Power Systems, Hyteon Inc.,
The Clean Carbon Conductors team, with members from Rice University and DexMat Co, is designing enhanced-conductivity CNTs by improving fiber quality, alignment, packing density, and by electrochemically doping the CNTs. Each winning team has earned a $25,000 cash prize and a stipend for third-party conductivity testing in Stage 2.
IACMI is dedicated to overcoming these barriers by developing low-cost, high-production, energy-efficient manufacturing and recycling processes for composites applications. In the wind energy industry, advances in low-cost composite materials will help manufacturers build longer, lighter and stronger blades to create more energy.
Researchers at the University of Central Florida’s (UCF) Advanced Materials Processing and Analysis Center (AMPAC) have verified findings by Planar Energy that could lead to significant cost and performance improvements in large format batteries for practical electric vehicles, according to the company.
The US Advanced Research Projects Agency - Energy (ARPA-E) is awarding $33 million to 13 new projects aimed at developing transformational fuel cell technologies for low-cost distributed power generation. SiEnergy’s technology will operate at relatively low temperatures of 300-500 ?C, The University of California Los Angeles.
Projects selected under this funding opportunity announcement will reduce both the costs of critical materials and the environmental impacts of production. Technology Holding LLC; Next Generation Separation Method for Rare Earths Partners: Massachusetts Institute of Technology DOE share: $499,673; Cost share: $124,999; Total costs: $624,672.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content