Remove Cost Of Remove Low Cost Remove Sodium
article thumbnail

RAL proposes new efficient and low-cost process to crack ammonia for hydrogen using sodium amide; transportation applications

Green Car Congress

RAL researchers are proposing a new process for the decomposition of ammonia to release hydrogen that involves the stoichiometric decomposition and formation of sodium amide from Na metal. Arguably, this focus may have diminished the consideration of reversibility, cost, and practicality of use of these materials. Click to enlarge.

Sodium 210
article thumbnail

New high energy, highly stable cathode for sodium-ion batteries

Green Car Congress

F 0.7 , for sodium-ion (Na-ion) batteries (NIBs). While high-energy Li-ion batteries (LIBs) are expected to contribute in part to the solution, the high cost and low stability prohibit wide application in this area, the researchers observe. Ragone plot for the new Na 1.5 cathode and other cathode materials for NIBs.

Sodium 292
article thumbnail

New long-duration, extended capacity Na-Al battery design for grid storage

Green Car Congress

Researchers led by the Department of Energy’s Pacific Northwest National Laboratory (PNNL) have extended the capacity and duration of sodium-aluminum batteries. The new sodium-based molten salt battery uses two distinct reactions. h is achieved with an estimated raw active materials cost of $7.02 of peak charge capacity.

article thumbnail

Univ. of Maryland team develops promising sodium-ion cathode material: FePO4/nanotube composite

Green Car Congress

Researchers at the University of Maryland have developed a nanocomposite material of amorphous, porous FePO 4 nanoparticles electrically wired by single-wall carbon nanotubes as a potential cathode material for sodium-ion batteries (SIBs). SWNT composite is a promising cathode material for viable sodium-ion batteries. C rate (10 mA/g).

Sodium 231
article thumbnail

Researchers find tin nanoparticles promising electrode material for sodium-ion batteries

Green Car Congress

Tin (Sn) shows promise as a robust electrode material for rechargeable sodium-ion (Na-ion) batteries, according to a new study by a team from the University of Pittsburgh and Sandia National Laboratory. reversible and rapid ion insertion and extraction, but using sodium ions rather than lithium. for the positive electrode.

Sodium 210
article thumbnail

Stanford team develops sodium-ion battery with performance equivalent to Li-ion, but at much lower cost

Green Car Congress

Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.

Sodium 186
article thumbnail

Haldor Topsøe acquires 18% of Na-ion battery company Faradion Ltd

Green Car Congress

Haldor Topsøe A/S, a global market leader in catalysis and related process technologies, recently acquired 18% of the shares in sodium-ion battery technology company Faradion Ltd, based in Sheffield, UK. Other partners in the investment included Finance Yorkshire’s Seedcorn Fund and Rising Stars Growth Fund II LP.

Sodium 199