This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Hydrogen produced with renewable electricity could compete on costs with fossil fuel alternatives by 2030, according to a new report from the International Renewable Energy Agency (IRENA). The report— Green Hydrogen Cost Reduction: scaling up electrolyzers to meet the 1.5
The results from this study suggested a cost of hydrogen as low as ¥17 to ¥27/Nm 3 (US$0.16 - $0.25) using a combination of technologies and the achievement of ambitious individual cost targets for batteries, PV, and electrolyzers. This approximately converts to US$1.92 to US$3.00/kg Credit: NIMS. 2018.11.119 ).
Heliogen’s AI-enabled concentrated solar energy system is designed to create carbon-free steam, electricity, and heat from abundant and renewable sunlight. When combined with Bloom’s proprietary solid oxide, high-temperature electrolyzer, hydrogen can be produced 45% more efficiently than low-temperature PEM and alkaline electrolyzers.
The technology could fundamentally transform the way electricity is stored on the grid, making power from renewable energy sources such as wind and sun far more economical and reliable. Consequently they maintain peak discharge power for less than an hour before they are drained, and are therefore ill-suited to store intermittent renewables.
Methane derived from CO 2 and renewable H 2 sources is an attractive fuel, and it has great potential as a renewable hydrogen carrier as an environmentally responsible carbon capture and utilization approach. The authors’ assessment identified further cost savings, in that CO 2 captured by EEMPA can be converted to methane on site.
LeMond Composites, founded by three-time Tour de France champion Greg LeMond, has licensed a low-cost, high-volume carbon fiber manufacturing process developed at the US Department of Energy’s Oak Ridge National Laboratory (ORNL). Earlier post.) The first commercially available product will be ready in Q1 of 2018.
A team led by Dr. Michael Grätzel at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland has developed a highly efficient and low-cost water-splitting cell combining an advanced perovskite tandem solar cell and a bi-functional Earth-abundant catalyst. Jingshan Luo, post-doctoral researcher, explains how. Credit: EPFL.
volts (V) of water-splitting voltage with its novel low-cost electrolysis technology. HyperSolar’s research is centered on developing a low-cost and submersible hydrogen production particle that can split water molecules using sunlight, emulating the core functions of photosynthesis. HyperSolar, Inc. V (at 25 °C at pH 0).
Raven SR , a renewable fuels company, and Hyzon Motors Inc., into locally produced, renewable hydrogen for Hyzon’s fleet of zero-emission commercial vehicles. Raven can also easily process natural and renewable gases alone or combined with solid waste. As part of the agreement, Hyzon is acquiring a minority interest in Raven SR.
Only in the case of high EV market share and a high renewable electricity standard (RES) do EVs make a material contribution to greenhouse gas (GHG) reductions, they found. Understanding these linkages provides a basis for developing energy strategies with consideration of cost, technology, and policy goals. —Choi et al.
A team at Imperial College London has examined the relative costs of carbon mitigation from a lifecycle perspective for 12 different hydrogen production techniques using fossil fuels, nuclear energy and renewable sources. Their results show a trade-off between the cost of mitigation and the proportion of decarbonization achieved.
Solid-oxide-fuel-cell manufacturer Bloom Energy is entering the commercial hydrogen market by introducing hydrogen-powered fuel cells and electrolyzers that produce renewable hydrogen. Bloom is capitalizing on this technology by taking terrestrial renewable power and producing hydrogen using solid oxide electrolyzers.
This material, together with the low-cost catalysts and injection moulded components developed, offer a prototype stack costing 43% of its PEM counterpart. The HydroGEN project focused on the realization of electrolyzer cost reduction through advances in materials technology and system simplification.
A new Energy Department study conducted by the National Renewable Energy Laboratory (NREL) indicates that by 2025 wind and solar power electricity generation could become cost-competitive without federal subsidies, if new renewable energy development occurs in the most productive locations. mmBtu and $8.43/mmBtu.
A multi-institutional team led by the US Department of Energy’s (DOE) Argonne National Laboratory (ANL) has developed a low-cost cobalt-based catalyst for the production of hydrogen in a proton exchange membrane water electrolyzer (PEMWE). volts (Nafion 212 membrane) and low degradation in an accelerated stress test.
Hydrokinetic energy is an abundant renewable resource that can boost grid resiliency and reduce infrastructure vulnerability, but it is currently a cost prohibitive option compared to other energy generating sources. These methodologies will significantly decrease the levelized cost of energy (LCOE) of the final HKT design.
and Syngenta Ventures will collaborate to develop advanced crop technology that will provide low-cost sugars from cellulosic biomass for a variety of industrial applications including biofuels and biochemicals without requiring external enzymes for biomass hydrolysis. Agrivida’s cell wall degrading (CWD) technology.
The least expensive way for the Western US to reduce greenhouse gas emissions enough to help prevent the worst consequences of global warming is to replace coal with renewable and other sources of energy that may include nuclear power, according to a new study by University of California, Berkeley, researchers. Click to enlarge.
EPFL scientists have developed an Earth-abundant and low-cost catalytic system for splitting CO 2 into CO and oxygen—an important step towards achieving the conversion of renewable energy into hydrocarbon fuels. Using only Earth-abundant materials to catalyze both reactions, this design keeps the cost of the system low.
The new battery design could help ease integration of renewable energy into the electrical grid at lower cost, using Earth-abundant metals, according to a study just published in Energy Storage Materials. h is achieved with an estimated raw active materials cost of $7.02 mAh cm −2 , a discharge duration of 28.2 Weller et al.
The European Commission’s Joint Research Center (JRC) published a policy brief showing that delivery of large amounts of renewable hydrogen over long distances could be cost-effective. The most cost effective way to deliver renewable hydrogen depends on distance, amount, final use, and whether there is infrastructure already available.
ARPA-E’s new program, Robust Affordable Next Generation Energy Storage Systems (RANGE) ( earlier post ), aims to accelerate widespread EV adoption by dramatically improving driving range and reliability, and by providing low-cost, low-carbon alternatives to today’s vehicles. Advanced Aqueous Lithium-Ion Batteries. EnZinc Inc.
Amyris, Inc., , a company which converts plant-sourced sugars into renewable hydrocarbons, reports achieving a record low manufacturing cost of $1.75 Amyris’ farnesene is a renewable hydrocarbon molecule addressing growing demand in a broad range of applications, from diesel and jet fuel to high-performance materials.
A consortium of Progressive Energy, Essar, Johnson Matthey, and SNC-Lavalin will deliver the project comprising the development of a 100,000 Nm 3 per hour clean hydrogen production facility for deployment as part of the HyNet Cluster, using Johnson Matthey’s low-carbon hydrogen technology which enables carbon capture and storage.
The awards were made through the Commission’s Alternative and Renewable Fuel and Vehicle Technology Program. Alternative and Renewable Fuel and Vehicle Technology Program awards. The facility will create biodiesel from renewable waste-based materials such as used cooking oil from restaurants. Tour Engine, Inc. ,
Cyclonatix, Inc is developing an industrial-sized motor/controller to operate with either DC or AC power sources, for applications in electric vehicles, solar-powered pumps, HVAC&R, gas compressors, and other commercial and industrial machines which require high efficiency, variable speed/torque, and lowcost. by at least 10 times.
The devices can be fabricated with as few as three parts (anode, cathode, and cell body), reflecting their simplicity and potential for low-cost manufacture.The researchers used 3D printing to fabricate prototype electrolyzers that they demonstrated to be electrolyte agnostic, modular, and capable of operating with minimal product crossover.
An open-access paper on their work appears in the Journal of Renewable and Sustainable Energy , from AIP Publishing. Al is a favored hydrogen generation material because of its relatively lowcost, low density, and abundant geological reserves. The hydrogen is then used in a PEM fuel cell. Credit: Jing Liu.
On December 16, 2010 the US DOE Energy Information Agency (EIA) published a report projecting that renewable energy will still only constitute 12 percent of the USA’s energy sources by 2035. In France, renewable energy consumption will be 20 percent by 2020. EIA projections of renewables penetration. Source: EIA.
AFS BioOil announced that initial tests conducted by the company since startup of the system confirm that production costs of biodiesel will be in the range of $2 per gallon when produced in a commercial system of 1 millon gallons/yr and greater. —CEO Vadim Krifuks.
An additional benefit is that our nickel-iron electrode can catalyse both the hydrogen and oxygen generation, so not only could we slash the production costs by using Earth-abundant elements, but also the costs of manufacturing one catalyst instead of two. —Prof Zhao. Iron and nickel are currently priced at $0.13 and $19.65
Introducing hydrogen into energy networks represents the first step for spreading and developing green hydrogen from renewable sources, while reducing its costs. Hydrogen will achieve Total Cost of Ownership parity with diesel by 2030, even without additional incentives. —RINA CEO Ugo Salerno.
of Danbury, Connecticut will receive $900,000 to develop a novel hybrid system for low-cost, low greenhouse gas hydrogen production. Wiretough Cylinders LLC of Bristol, Virginia will receive $2 million to demonstrate a lowcost high pressure hydrogen storage vessel using a steel wire overwrap. FuelCell Energy Inc.
A team led by Dr. Stuart Licht at The George Washington University in Washington, DC has developed a low-cost, high-yield and scalable process for the electrolytic conversion of atmospheric CO 2 dissolved in molten carbonates into carbon nanofibers (CNFs.) —Stuart Licht.
The US Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) announced up to $30 million in funding for a new program for technologies that use renewable energy to convert air and water into cost-competitive liquid fuels. ( Comparative costs of current different energy delivery options for transportation.
The US Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL), joined by partners at Sandia National Laboratories and the Australian Solar Thermal Research Institute, launched the Heliostat Consortium (HelioCon), an international effort to drive down the cost of heliostats.
The technology has the capability to serve as a long-term, large-scale clean energy storage medium that aids power generation from renewable sources, however, formulating a cost-effective and well-regulated transition is a complex issue and the cost of producing hydrogen from renewable energy sources is currently expensive.
DE-FOA-0002423 ) Topic Areas ins the FOA support DOE’s Bioenergy Technologies Office’s (BETO’s) objectives to reduce the minimum selling price of drop-in biofuels, lower the cost of biopower, and enable high-value products from biomass or waste resources.
The cost of generating power from renewable energy sources has reached parity or dropped below the cost of fossil fuels for many technologies in many parts of the world, according to a new report released by the International Renewable Energy Agency (IRENA). Real weighted average cost of capital is 7.5%
These conductivity-enhanced materials have the potential to lower the costs and impacts of adding renewables and electric cars to the grid, maximize next-generation energy storage technologies, and support electrification for energy-intensive sectors. Advanced Manufacturing Office.?.
Renewable biofuels and chemicals company Coskata, Inc. The Coskata process is high-yield and low-cost, the company says. In a fully-built out plant, the company expects to produce ethanol with unsubsidized cash operating costs of less than $1.50 Proposed maximum in the filing is $100 million.
The corresponding range for GHG savings with corn stover was 57% to 95% and marginally below the threshold of at least 60% for biofuels classified as cellulosic biofuels under the Renewable Fuels Standard. Production cost of ethanol is annualized over the simulation period. Credit: ACS, Dwivedi et al. Click to enlarge.
measurement capabilities and lowering the cost of electric. project integrates a unique, low-cost membrane with a new. energy storage system for renewable energy generation. electrolyte materials composed of lowcost iron. this project could enable deployment of renewable energy. cost in half or more.
A new project launched by the US Department of Energy (DOE) and led by Sandia National Laboratories and the National Renewable Energy Laboratory (NREL) will work in support of H 2 USA, the public private partnership introduced in 2013 by the Energy Department and industry stakeholders to address the challenge of hydrogen infrastructure.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content