This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
A study by a team of researchers from Technische Universität Berlin (TUB) and Fritz-Haber-Institut der Max-Planck-Gesellschaft has found that direct seawater splitting for hydrogen production has substantial drawbacks compared to conventional water splitting and offers almost no advantage. Diess et al.
Researchers at the University of Ontario Institute of Technology are developing a new method to dissociate water vapor into hydrogen gas by microwave-generated plasma (plasmolysis). A) An experimental setup for full microwave hydrogen production and (b) Schematic of the plasma reactor placed inside the microwave. Chehade et al.
The Sparc Green Hydrogen process combines concentrated solar (CS) with photocatalytic water splitting. This testing has shown a hydrogen production and efficiency benefit from exposing certain photocatalyst materials to concentrated light and heat. A second round of testing later in the year will be considered pending results.
Africa can produce 50 million tons of green hydrogen a year by 2035, according to a new study by the European Investment Bank (EIB), International Solar Alliance and the African Union, with the support of the Government of Mauritania, HyDeal and UCLG Africa. This is equivalent to energy costs of US$60 a barrel.
Using a hematite photocatalyst, a team led by researchers from Kobe University has succeeded in producing both hydrogen gas and hydrogen peroxide at the same time from sunlight and water. Hydrogen has gained attention as one of the possible next generation energy sources. under 600nm). Tachikawa et al.
(SoCalGas) and H2U Technologies are testing a new electrolyzer, called the Gramme 50, for the production of green hydrogen. According to early analysis, the cost target of the new technology is half that of current electrolyzers and the total cost of ownership over its life is expected to be 75% less.
China Petroleum & Chemical Corporation (Sinopec) officially launched China’s first methanol-to-hydrogen and hydrogen refueling service station in Dalian, China. The storage and transportation cost of methanol is also much lower than hydrogen, making methanol-to-hydrogen an attractive hydrogen production technology.
million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. A well-established downstream syngas-to-synfuel conversion process, such as Fischer-Tropsch synthesis, converts the syngas to liquid synfuel for a total projected cost of less than $4/gallon.
Researchers from the Chinese Academy of Sciences and Tsinghua University have used a gallium, indium, tin and bismuth alloy to generate hydrogen, when placed in contact with an aluminum plate immersed in water. The hydrogen is then used in a PEM fuel cell. In the 1960s, Woodall et al. In 2015, Zhang et al.
Element 1 Corporation (e1NA), Zhejiang Methanol Hydrogen Technology (ZMHT) and Zhejiang Element 1 (e1China) have formed a joint venture company—Zhejiang Hydrogen One Energy Technology Co., — to drive methanol-based hydrogen generation technology and commercialize e1NA’s technology throughout Greater China.
In an open access paper published in Nature Communications , researchers from the University of Wollongong in Australia report that their capillary-fed electrolysis cell demonstrates water electrolysis performance exceeding commercial electrolysis cells, with a cell voltage at 0.5 kWh/kg hydrogen (vs. 2 and 85 °C of only 1.51
a global supplier of hydrogen fuel cell-powered commercial vehicles, announced a joint venture to build up to 100 hydrogen hubs across the United States and globally. into locally produced, renewable hydrogen for Hyzon’s fleet of zero-emission commercial vehicles. Raven SR , a renewable fuels company, and Hyzon Motors Inc.,
Researchers from the University of Houston (UH) have developed a cobalt(II) oxide (CoO) nanocrystalline catalyst that can carry out overall water splitting with a solar-to-hydrogen efficiency of around 5%. The generation of hydrogen from water using sunlight could potentially form the basis of a clean and renewable source of energy.
Michael Grätzel at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland has developed a highly efficient and low-costwater-splitting cell combining an advanced perovskite tandem solar cell and a bi-functional Earth-abundant catalyst. conversion efficiency from solar energy to hydrogen, a record with earth-abundant materials.
million) to five demonstration phase projects for low-carbon hydrogen production. The hydrogen projects receiving funding are: Dolphyn. The project concerns the production of hydrogen at scale from offshore floating wind in deep water locations. HyNet – low carbon hydrogen plant. Acorn Hydrogen Project.
Berlin-based Graforce Hydro GmbH, the developer of a plasma electrolyzer—the Plasmalyzer —is applying its technology for the highly efficient generation of hydrogen from industrial waste water. The current Plasmalyzer offers highly efficient water splitting. Only purified water and oxygen remain as waste products.
ITM Power has provided an update on the cost structure of hydrogen generated by its HFuel electrolysis platform. The new estimated cost —US$4.13/kg ITM Power projects hydrogencost at £4.19/kg ITM Power projects hydrogencost at £4.19/kg Water price. Fueling cost comparison.
Perovskite materials may hold the potential to play an important role in a process to produce hydrogen in a renewable manner, according to an analysis from scientists at the National Renewable Energy Laboratory (NREL). Electrolysis needs electricity to split water into hydrogen and oxygen.
Researchers from the University of Adelaide and Tianjin University have successfully split seawater without pre-treatment to produce green hydrogen. The use of vast amounts of high-purity water for hydrogen production may aggravate the shortage of freshwater resources. A paper on the work is published in Nature Energy.
Heliogen and Bloom Energy have successfully demonstrated the production of green hydrogen by integrating the companies’ technologies: Heliogen’s concentrated solar energy system and the Bloom Electrolyzer. Electricity accounts for nearly 80% of the cost of hydrogen from electrolysis. Source: Heliogen.
Researchers led by MIT professor Daniel Nocera have produced an “artificial leaf”—a solar water-splitting cell producing hydrogen and oxygen that operates in near-neutral pH conditions, both with and without connecting wires. aligned with the low-cost systems engineering and. Earlier post.). simulated sunlight.
bp is developing plans for the UK’s largest blue hydrogen production facility, targeting 1GW of hydrogen production by 2030. bp’s hydrogen business and make a major contribution to the UK Government’s target of developing 5GW of hydrogen production by 2030.
The first Energy Earthshot, launched 7 June—Hydrogen Shot—seeks to reduce the cost of clean hydrogen by 80% to $1 per 1 kilogram in 1 decade (“1-1-1”). The US Department of Energy (DOE) is now launching the Hydrogen Shot Fellowship to recruit diverse talent who can contribute to make Hydrogen Shot a reality.
Researchers at Wakayama University in Japan have produced a mixture of hydrogen and carbon monoxide gas by irradiating a mixture of carbon powder and distilled water with intense nanosecond laser pulses at room temperature. Electrodes or any other photocatalysts were not used to produce the hydrogen. mL volume of water.
With nearly 500 hours of full-load operation completed at the laboratory, Bloom’s high-temperature electrolyzer is producing hydrogen more efficiently than other commercially available electrolyzers, including PEM and alkaline. kWh per kilogram of hydrogen and with 88.5% LHV (Lower Heating Value) to DC.
approximately $1 million in federal funds to develop H2Rescue, a hydrogen fuel cell truck that will travel to disaster relief sites and provide power, heat, and water. Earlier post.). The first award for approximately $3.5 The first award for approximately $3.5 The fuel cell stack components will be developed and prototyped in the U.S.
Hyundai Motor Company announced key investments into three hydrogen companies—Impact Coatings, H2Pro and GRZ Technologies—to strengthen its leadership position in the global hydrogen fuel cell ecosystem. We hope to accelerate the widespread adoption of hydrogen technology by making FCEVs more accessible for our customers.
Alstom and MOL, Hungary’s leading oil and gas company, have signed a Memorandum of Understanding to structure cooperation in examining the use of hydrogen technology in rail transportation. MOL Group already produces and utilizes almost 150,000 tonnes of hydrogen per year. Operating these trains requires hydrogen refueling stations.
IHS Markit forecasts that annual global investments in green hydrogen—hydrogen production powered by renewable sources—will exceed US$1 billion by 2023. The elevated investment outlook is attributed to falling costs and policy support from governments looking to shift towards low-carbon economies.
volts (V) of water-splitting voltage with its novel low-cost electrolysis technology. The theoretical minimum voltage needed to split water molecules into hydrogen and oxygen is 1.23 Nanosystem for water electrolysis. This lowers the system cost of what is essentially an electrolysis process.
HyPoint, a company developing turbo air-cooled hydrogen-fuel-cell systems for aviation and urban air mobility ( earlier post ), has entered into a strategic development agreement with BASF New Business GmbH (BNB), a subsidiary of chemical company BASF. 20kW HyPoint HTPEM single power module.
Researchers at Stanford University, with colleagues at Oak Ridge National Laboratory and other institutions, have developed a nickel-based electrocatalyst for low-costwater-splitting for hydrogen production with performance close to that of much more expensive commercial platinum electrocatalysts. V with good stability.
Bioscience engineers at KU Leuven have created a solar panel that produces hydrogen gas from moisture in the air. If that electric power is used to split the water into hydrogen gas and oxygen, you lose a lot of energy. m² that converts 15% of the sunlight straight into hydrogen gas. That’s how you get results.
The US Department of Energy (DOE) will award $20 million to ten new research and development projects that will advance hydrogen production and delivery technologies: six on hydrogen production and four on hydrogen delivery. million to develop a reactor for hydrogen production from bio-derived liquids.
Emory DeCastro, Advent’s Chief Technology Officer, added that these developments have the potential to drop overall fuel cell system costs by 25% and enable higher power density and simplify packaging constraints. This is especially important for long haul trucks using hydrogen fuel cells.
Production costs per barrel of oil equivalent. The cost of electrofuels—fuels produced by catalyst-based systems for light capture, water electrolysis, and catalytic conversion of carbon dioxide and hydrogen to liquid fuels—remains far away from viable, according to a new analysis by Lux Research.
Conceptual design of a water-based flow battery GE scientists are researching as part of ARPA-E’s RANGE program. This battery could be one-fourth the cost of current car batteries, and could nearly triple the distance electric vehicles could travel on a single charge. Click to enlarge. Energy Environ. Tucker, Michael C., Batteries'
The Van Hool A12 Battery Electric is the first vehicle in a completely new range of buses in four different lengths (12m, 13m, 18m and 24m) equipped with exclusively zero emission powertrains: battery-electric, fuel cell (hydrogen) and trolley. Our customers are focusing on greening their fleets and are pursuing zero emissions.
H2Pro is developing a new way of producing hydrogen from water. Similar to electrolysis, its technology, E-TAC (Electrochemical – Thermally Activated Chemical)—developed at Technion, Israel Institute of Technology—uses electricity to split water into hydrogen and oxygen. —Dotan et al.
Researchers at Pacific Northwest National Laboratory (PNNL), with colleagues from Oregon State University, have developed PNNL a durable, inexpensive molybdenum-phosphide catalyst that efficiently converts wastewater and seawater into hydrogen. If you can produce hydrogen from seawater, the resource pool is pretty much unlimited.
The new catalyst is applied in a hybrid photocatalytic-electrolysis system that uses the photocatalytic reaction converting solar energy to lower the electrolysis voltage required for the hydrogen production by water electrolysis. Potential diagram of various reaction mechanisms for hydrogen production via water decomposition. (a)
The Western Australia Government of Premier Mark McGowan will bring forward the Western Australian Renewable Hydrogen Strategy targets by a decade and invest $22 million to develop hydrogen supply, meet growing demand for the clean fuel and create jobs. The McGowan Government has committed $5.7
Austria-based oil and gas company OMV opened the first public hydrogen filling station in Vienna, Austria. OMV has been researching the alternative drive concept for vehicles with hydrogen and fuel cells for several years. Compared with conventional filling stations, this would mean a reduction in energy costs of around 50%.
A transparent film of copper nanowires was transformed into an electrocatalyst for water oxidation by electrodeposition of Ni or Co onto the surface of the nanowires. Water oxidation (2H 2 O → O 2 + 4 e- + 4H + ) is a key step for converting solar energy into chemical fuels. Chen et al. Click to enlarge. A team led by Benjamin J.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content