This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
The California Energy Commission (CEC) adopted a report establishing offshore wind goals and moving the state one step closer to development of the clean energy resource off California’s coast. Additional transmission infrastructure will be needed to deliver offshore wind energy from this region to the grid.
Siemens Gamesa and Siemens Energy are joining forces to develop an innovative solution that fully integrates an electrolyzer into an offshore wind turbine as a single synchronized system to produce green hydrogen directly. It is a prime example of enabling us to store and transport wind energy, thus reducing the carbon footprint of economy.
The average cost of a Li-ion battery cell—used to power electric vehicles and to provide flexibility in the power grid as more renewables, such as solar and wind, are added will fall below $100 per kilowatt hour (kWh) in the next three years, according to a new analysis by IHS Markit.
In a new study published in the journal Applied Energy , Carnegie Mellon University (CMU) researchers found that controlled charging of plug-in hybrid electric vehicles (PHEVs) reduces the costs of integrating the vehicles into an electricity system by 54–73% depending on the scenario. —Weis et al.
A plot of ESOI for 7 potential grid-scale energy storage technologies. Benson from Stanford University and Stanford’s Global Climate and Energy Project (GCEP) has quantified the energetic costs of 7 different grid-scale energy storage technologies over time. Credit: Barnhart and Benson, 2013. Click to enlarge.
Total Smart Gridcosts. The Electric Power Research Institute (EPRI) has released a broad assessment of the costs and benefits to modernize the US electricity system and deploy the smart grid. The analysis updates EPRI’s 2004 EPRI assessment, which estimated the cost of implementing a smart grid at $165 billion.
a United Kingdom-based hybrid clean energy company, is developing a wind-SMR (Small Modular Reactor) and hydrogen production hybrid energy project in North Wales. The UK recently announced plans to expand offshore wind capacity rapidly by 2030 and invest in SMR development to meet net-zero carbon emissions goals by 2050.
The technology could fundamentally transform the way electricity is stored on the grid, making power from renewable energy sources such as wind and sun far more economical and reliable. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output.
The new battery design could help ease integration of renewable energy into the electrical grid at lower cost, using Earth-abundant metals, according to a study just published in Energy Storage Materials. h is achieved with an estimated raw active materials cost of $7.02 mAh cm −2 , a discharge duration of 28.2
Distributed wind energy systems are commonly installed on residential, agricultural, commercial, institutional, and industrial sites, connected either physically or virtually on the customer side of the meter (to serve on-site load) or directly to the local distribution or micro grid (to support local grid operations or offset nearby loads).
The US Department of Energy is awarding $620 million for projects around the country to demonstrate advanced Smart Grid technologies and integrated systems. Smart grid regional demonstrations involving plug-in vehicles include (ranked by DOE funding): Columbus Southern Power Company (doing business as AEP Ohio).
The US Department of Energy (DOE) is soliciting ( DE-FOA-0000410 ) proposals for up to four offshore wind energy projects to receive up to $180 million over six years, including an initial commitment of $20 million in fiscal year 2012. LCOE is the sum of all annual costs divided by the amount of electricity produced per year.).
The US Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL) released the Eastern Wind Integration and Transmission Study (EWITS). The study identified operational best practices and analyzed wind resources, future wind deployment scenarios, and transmission options.
When electricity is in high demand and more valuable, the pressurized gas is allowed to warm, turning a turbine as it expands and thus generating energy that can be used at peak times when the sun is not shining and the wind is not blowing.
The US Department of Energy is awarding more than $5 million to support US wind energy development. million to boost the speed and scale of midsize wind turbine technology development and deployment. million to boost the speed and scale of midsize wind turbine technology development and deployment.
The report, Bucks for balancing: can plug-in vehicles of the future extract cash—and carbon—from the power grid? , is based on a research collaboration between a team of engineers from Ricardo and National Grid, the operator of the high voltage electricity transmission system within Great Britain (GB). Click to enlarge.
Li-ion battery maker A123 Systems will supply a Grid Battery System (GBS) to Maui Electric Company (MECO), a utility serving residents and businesses on the islands of Maui, Lanai and Molokai in Hawaii. The system, NSTAR’s first battery energy storage project, is proposed for installation at a substation in Medway, Mass. Maui Electric.
The US Department of Energy’s (DOE) Wind Energy Technologies Office (WETO) and Office of Electricity (OE) plan to fund (DE-FOA-0003241) research to drive innovation and reduce costs of high-voltage direct current (HVDC) voltage source converter (VSC) transmission systems.
Unveiling a coordinated strategic plan to accelerate the development of offshore wind energy, Secretary of the Interior Ken Salazar and Secretary of Energy Steven Chu announced steps forward in support of offshore wind energy in the United States, including new funding opportunities for up to $50.5 Next-Generation Drivetrain (up to $7.5
This latest round of ARPA-E projects seek to address the remaining challenges in energy storage technologies, which could revolutionize the way Americans store and use energy in electric vehicles, the grid and beyond, while also potentially improving the access to energy for the US. measurement capabilities and lowering the cost of electric.
A new policy brief published by the Organisation for Economic Co-operation and Development’s (OECD) International Transport Forum (ITF) notes that existing electricity systems will need to be reconfigured to support the widespread adoption of electric mobility and suggests that Smart Grid technologies and EVs and EVs could be mutually beneficial.
The California Independent System Operator Corporation (ISO), California’s non-profit grid operator, released its new five-year (2012-2016) strategic plan. Between now and 2020, wind and solar generation will quadruple within the ISO transmission grid at the same time electric vehicle charging increases significantly.
US-based lithium-ion battery producer EnerDel is partnering with the real estate arm of Japan’s industrial trading giant, ITOCHU Corporation, to develop and produce the advanced battery systems for a residential smart grid energy storage project to be installed in a major apartment building near Tokyo. Earlier post.). since 2003.
Deep declines in wind, solar and battery technology costs will result in a grid nearly half-powered by the two fast-growing renewable energy sources by 2050, according to the latest projections from BloombergNEF (BNEF). Wind and solar grow from 7% of generation today to 48% by 2050. Global power generation mix.
BNEF projects that it will be made possible by further sharp declines in the cost of lithium-ion batteries, on top of an 85% reduction in the 2010-18 period. The report goes on to model the impact of this on a global electricity system increasingly penetrated by low-costwind and solar.
The US Department of Energy (DOE) Advanced Research Projects Agency-Energy (ARPA-E) will make up to $130 million available to develop five new program areas including biofuels, thermal storage, rare earth alternatives, grid controls, and solar power electronics. Related Funding Opportunity Announcements here.).
Source: “Hidden Costs of Energy”. Source: “Hidden Costs of Energy”. The committee also separately derived a range of values for damages from climate change; the wide range of possibilities for these damages made it impossible to develop precise estimates of cost. Damages are expressed in cents per VMT (2007 USD). cents per kwh.
We see $548 billion being invested in battery capacity by 2050, two thirds of that at the grid level and one third installed behind-the-meter by households and businesses. trillion of that going to wind and solar and a further $1.5 NEO 2018 sees $11.5 trillion to other zero-carbon technologies such as hydro and nuclear.
The removal of precious metal catalysts has long been understood to be key to achieving a step-change in the cost of electrolysis, and therefore hydrogen production. ITM Power will provide hydrogen energy storage and clean fuel technologies for integration into the renewable energy smart grid system being developed on the Isle of Wight.
Through the JuiceNet platform, these facilities can be remotely controlled and aggregated for grid balancing purposes relying on unidirectional and bidirectional (vehicle-to-grid, V2G) electricity flows. eMotorWerks has deployed more than 25,000 smart-grid enabled charging stations to date.
In 2009, combined global revenue for the three major clean-energy sectors—solar photovoltaics (PV), wind power, and biofuels—grew by 11.4% Wind power (new installation capital costs) is projected to expand from $63.5 Last year’s global wind power installations reached a record 37,500 MW. over 2008, reaching $139.1
The New York Independent System Operator (NYISO) is asking the Federal Energy Regulatory Commission (FERC) to allow Limited Energy Storage Resources (LESR)—which includes battery and flywheel technologies—to provide the “regulation” service needed to balance electrical supply and demand on the grid.
Cost of carbon abated for transport applications. It draws on benchmarking data to demonstrate the full lifecycle carbon dioxide savings and also demonstrates that the Bio-SNG route is a very cost effective route for decarbonization compared with other renewables. Cost of carbon abated. Click to enlarge.
Hydrokinetic energy is an abundant renewable resource that can boost grid resiliency and reduce infrastructure vulnerability, but it is currently a cost prohibitive option compared to other energy generating sources. These methodologies will significantly decrease the levelized cost of energy (LCOE) of the final HKT design.
For solar and wind power to be used in a significant way, we need a battery made of economical materials that are easy to scale and still efficient. Currently the electrical grid cannot tolerate large and sudden power fluctuations caused by wide swings in sunlight and wind. Batteries Power Generation Smart Grid'
The new ARPA-E selections focus on accelerating innovations in clean technology while increasing US competitiveness in rare earth alternatives and breakthroughs in biofuels, thermal storage, grid controls, and solar power electronics. High Performance, Low Cost Superconducting Wires and Coils. Research, TECO Westinghouse Motor.
The two companies have agreed to collaborate on the following activities: Introduction of V2G services in the European market; Exploring the use of second-life EV batteries for stationary applications (including households, buildings, grid); and. Designing and evaluating potential affordable energy and mobility pack offers.
Groupe Renault is beginning the first large-scale pilot schemes in alternating-current, vehicle-to-grid (V2G) charging in electric vehicles. Vehicle-to-grid charging is a key pillar of the smart electric ecosystems that Groupe Renault has set up. The pilot schemes will begin in the Netherlands and Portugal.
To be successful, systems will need to evolve—in some cases, considerably—to compete financially with the cost of natural gas production. The future grid will face significant challenges by providing clean power from intermittent resources to a much more dynamic load. In their study, Yang et al. —Yang et al.
While the country is one of the world’s largest producers of wind and solar renewable energy, it faces the issue of renewable energy being weather-dependent and prone to fluctuation. In the quest to reach carbon neutrality, methanol and electric vehicles are two powerful tools in the toolshed.
The California Independent System Operator (ISO), the California Public Utilities Commission (CPUC) and the California Energy Commission (CEC) unveiled a comprehensive roadmap to assess the current market environment and regulatory policies for connecting new energy storage technology to the state’s power grid. —California Roadmap.
The PNNL technology tells a vehicle’s battery charger when to start and stop charging based upon existing conditions on the electrical grid. The Grid Friendly EV Charger Controller technology notifies the car’s battery charger when to start and stop charging based upon existing conditions on the electrical grid. Source: PNNL.
To help California mitigate its ever-growing wildfires, this year CalSEED has included companies that are innovating in technologies that will build wildfire resiliency into the grid. This novel technology would deliver safe, reliable, resilient, and cost-effective electric power in the grid. the cost of energy storage?by
Researchers at MIT are proposing using a variation on pumped hydroelectric systems for storage of electricity produced by offshore wind farms. The key to this Ocean Renewable Energy Storage (ORES) system is the placement of 30-meter-diameter hollow concrete spheres on the seafloor under the wind turbines. Earlier post.).
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content