This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Scottish Enterprise, Transport Scotland and the Hydrogen Accelerator, based at the University of St Andrews, have appointed Arcola Energy and a consortium of industry leaders in hydrogen fuel cell integration, rail engineering and functional safety to deliver Scotland’s first hydrogen powered train.
Researchers from the University of Houston, with colleagues at the University of São Paolo in Brazil, have demonstrated how copper-resistant bacterium from a copper mine in Brazil convert CuSO 4 (copper sulfate) ions into zero-valent Cu (metallic copper). An open-access paper on their research is published in Science Advances.
University of Queensland researchers, working in collaboration with the Technical University of Munich (TUM), have found a way to convert sugarcane into isobutanol— a building block of aviation fuel and other products—more efficiently. An open-access paper on the work is published in Chemistry - a European Journal.
Researchers at the University of Oxford have developed a method to convert CO 2 directly into aviation fuel using a novel, inexpensive iron-based catalyst. These are important raw materials for the petrochemical industry and are presently also only obtained from fossil crude oil.
Universal Hydrogen has flown a 40-passenger regional airliner using hydrogen fuel cell propulsion. The flight, conducted under an FAA Special Airworthiness Certificate, was the first in a two-year flight test campaign expected to culminate in 2025 with entry into passenger service of ATR 72 regional aircraft converted to run on hydrogen.
Deutsche Aircraft, the new purpose-driven German aircraft Original Equipment Manufacturer (OEM) ( earlier post ), and Universal Hydrogen Co. earlier post ) announced a technical collaboration to complete a design study to incorporate Universal Hydrogen’s modular capsule technology into the Dornier 328 program. Earlier post.)
Washington State University researchers have developed an innovative way to convert waste polyethylene plastic to ingredients for jet fuel and other valuable products, making it easier and more cost-effective to reuse plastics. —Jia et al. They also believe their process could work effectively with other types of plastics.
Researchers at Illinois Institute of Technology (IIT), with colleagues at the University of Pennsylvania and the University of Illinois at Chicago have developed an electrolyzer capable of converting carbon dioxide into propane in a manner that is both scalable and economically viable. —Esmaeilirad et al.
Researchers at the University of have developed an unusually rapid method to deliver cost-effective algal biocrude in large quantities using a specially-designed jet mixer. Algal biocrude obtained from CIJMs converts successfully into biodiesel, and cascades of CIJMs increase the net lipid production.
Ricardo will be testing the prototype at the engine development facility at the University of Brighton—the company’s long-term combustion engine research partner. We are working with a range of clients on hydrogen and renewable fuels to reduce carbon emissions in these challenging sectors.
announced the completion of a facility in Tokyo that will convert sewage sludge into renewable hydrogen fuel for fuel cell mobility and power generation. A new facility in Tokyo that will convert sewage sludge into renewable hydrogen gas for fuel-cell vehicles is nearing completion. Renewable hydrogen systems manufacturer Ways2H Inc.
The EU-funded research project HyFlexFuel recently successfully produced biocrudes via hydrothermal liquefaction (HTL) from a variety of biomasses, including sewage sludge, food waste, manure, wheat straw, corn stover, pine sawdust, miscanthus and microalgae in a pilot-scale continuous HTL plant at Aarhus University (Denmark).
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. Zepler Institute, University of Southampton. Computerized tomography of a MOFC, showing buildup of TiO 2 (light blue particles) in the triangular channels.
Universal Hydrogen was granted a special airworthiness certificate in the experimental category by the Federal Aviation Administration (FAA) to proceed with the first flight of its hydrogen-powered regional aircraft. —Paul Eremenko, co-founder and CEO of Universal Hydrogen Air New Zealand.
A joint research team from City University of Hong Kong (CityU) and collaborators have developed a stable artificial photocatalytic system that is more efficient than natural photosynthesis. The new system mimics a natural chloroplast to convert carbon dioxide in water into methane, very efficiently using light.
Researchers from University of Girona (Spain) successfully used electrically efficient microbial electrosynthesis cells (MES) to convert CO 2 to butyric acid. In an open-access paper published in the journal Environmental Science and Ecotechnology , they reported operating the low ohmic resistance (15.7
The technologies work as a system that converts organic waste into renewable hydrogen gas for use as a biofuel. There are usually thousands of microbes that are required to convert a complex organic mixture from biomass into electrons. He is now a research professor at the University of Tennessee, while also working with the startup.
Researchers at the University of Delaware have shown that ruthenium deposited on titania is an active and selective catalyst for breaking down polypropylene into valuable lubricant-range hydrocarbons with narrow molecular weight distribution and low methane formation at low temperatures of 250 °C with a modest H 2 pressure.
Universal Hydrogen, magniX, Plug Power and AeroTEC have established a Hydrogen Aviation Test and Service Center at Grant County International Airport in Moses Lake, Washington. Universal Hydrogen’s Dash-8 conversion will be the first commercially-relevant hydrogen-powered aircraft, serving 41 to 60 passengers on routes up to 1,000 kilometers.
Biofuels producer Renewable Energy Group joined Iowa State University (ISU) at the BioCentury Research Farm (BCRF) to mark the start of a new hydrotreater pilot plant. REG converts waste and byproduct fats and oils into biodiesel and renewable diesel.
A new material that can selectively capture CO 2 molecules and efficiently convert them into useful organic materials has been developed by researchers at Kyoto University, along with colleagues at the University of Tokyo and Jiangsu Normal University in China.
Researchers at the University of Virginia (UVA) have devised a process for converting retired Li-ion battery anodes to graphene and graphene oxide (GO). A paper on the work is published in the ACS journal Nano Letters.
Professor Yutaka Amao of the Osaka City University Artificial Photosynthesis Research Center and Ryohei Sato, a 1 st year Ph.D. The development of an effective catalyst is an important step in creating an artificial photosynthesis system that uses sunlight to convert carbon dioxide into organic molecules. Resources.
Via Mobility Services, a local nonprofit social enterprise, operates Boulder’s HOP transit route, a high-frequency shuttle service serving Boulder hotspots like the University of Colorado campus and Downtown Boulder.
A team of scientists from LanzaTech, Northwestern University and the Department of Energy’s Oak Ridge National Laboratory have engineered a microbe to convert molecules of industrial waste gases, such as carbon dioxide and carbon monoxide, into acetone and isopropanol (IPA). —Tim Tschaplinski.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —Dr Wang.
Researchers in China report that commercialized liquid electrolyte can be easily converted into a novel quasi-solid gel polymer electrolyte (GPE) via a simple and efficient in situ gelation strategy. O 2 , revealing tremendous potential in promoting the large-scale application of future Lithium metal batteries (LMBs).
An international research team has now copied this principle, and used nanoparticles to convert carbon dioxide into ethanol and propanol. Enzymes use cascade reactions to produce complex molecules from comparatively simple raw materials.
Rice University nanoscientists have demonstrated a new catalyst that can convert ammonia into hydrogen fuel at ambient pressure using only light energy, mainly due to a plasmonic effect that makes the catalyst more efficient. Photo by LANP/Rice University).
A team from the University of Calgary and Rice University has used flash joule heating (FJH) ( earlier post ) to convert low-value asphaltenes—a by-product of crude oil refining—into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG). Flash graphene from asphaltenes. (A)
C2CNT was founded by Dr. Stuart Licht, a Professor at George Washington University, a former Program Director in Chemistry at the National Science Foundation and a Fellow of the Electrochemical Society. The carbon nanotube wall showing the cylindrical layers of graphene comprised of individual carbons.
Researchers at Korea University have developed high-performance, textile-based electrodes for watersplitting (WSE); the non-noblemetal-based electrodes can generate a large amount of hydrogen with low overpotentials and high operational stability. —Mo et al.
OXCCU, a company spun-out from the University of Oxford in 2021 that is focused on converting carbon dioxide and hydrogen into industrial and consumer products ( earlier post ), completed an £18-million (US$22.8 million) Series A financing round.
Researchers from the University of Wisconsin Madison and ExxonMobil Research and Engineering have devised a two-stage process by which an alcohol such as ethanol or 1-butanol can be converted with high yields into distillate-range ethers and olefins by combining Guerbet coupling (the coupling of two alcohol molecules) and intermolecular dehydration.
Researchers at Changsha University of Science & Technology in China have used spent asphalt to produce a high-performance universal Li/Na/K-ion anode material. A paper on their work is published in the Journal of Power Sources. Spent asphalt is widely available, and even poses environmental risks.
Researchers at WMG, University of Warwick, have repurposed end-of-life electric vehicle batteries as small energy storage systems (ESS) for off-grid locations in developing countries or isolated communities.
The patented REACH technology, developed by US-based parent company Mercurius Biorefining, has the potential to convert sugarcane bagasse and other biomass into cost effective drop-in biofuels and bio-chemicals, as alternatives to fossil fuels. Does not use enzymes or microbes therefore it is not sensitive to feedstock impurities.
The projects, led by universities, private companies, and national laboratories, were selected to develop technologies to advance UNF recycling, reduce the volume of high-level waste requiring permanent disposal, and provide safe domestic advanced reactor fuel stocks. Earlier post.) Award amount: $4,900,000). Award amount: $4,715,163).
They then used high-temperature pyrolysis to convert the atoms to catalytically active sites within the framework. Along with PNNL, researchers from Washington University in St. A two-step encapsulation and ligand-exchange approach effectively introduces CoN 4 complexes into the ZIF-8 micropores. —Yuyan Shao.
Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. Image credit: Roksana Rashid, McGill University.
The electrical converter, which is located below the fuel cell, adjusts its voltage level to that of the electrical drive and the power buffer battery. These should be designed so that they can be easily integrated into universal vehicle architectures. This is fed by the braking energy and the energy of the fuel cell.
The Department for Industrial Furnaces and Heat Engineering (IOB) at RWTH Aachen University is researching the efficient and clean combustion of hydrogen for the aluminum and steel industry in the EU project “HyInHeat” alongside 30 partners from twelve countries.
Researchers at The Ohio State University have used a chemical looping process to produce hydrogen from hydrogen sulfide gas—commonly called “sewer gas”. The team first used chemical looping on coal and shale gas to convert fossil fuels into electricity without emitting carbon dioxide into the atmosphere.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content