This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers at the University of Oxford have developed a method to convert CO 2 directly into aviation fuel using a novel, inexpensive iron-based catalyst. Fe 5 C 2 by CO 2 /water in the first hours of the catalytic reaction. An open-access paper on their work is published in the journal Nature Communications. Fe 5 C 2 respectively.
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. This gas–liquid–solid heterogeneous catalytic system synthesizes ammonia in 0.2 The conversion rate reaches 32.9 ± 1.38
announced the completion of a facility in Tokyo that will convert sewage sludge into renewable hydrogen fuel for fuel cell mobility and power generation. A new facility in Tokyo that will convert sewage sludge into renewable hydrogen gas for fuel-cell vehicles is nearing completion. Ways2H, Inc.
As water-splitting technologies improve, often using porous electrode materials to provide greater surface areas for electrochemical reactions, their efficiency is often limited by the formation of bubbles that can block or clog the reactive surfaces. As a result, there were substantial changes of the transport overpotential.
Researchers at the Department of Energy’s Pacific Northwest National Laboratory have developed a new method to convert captured CO 2 into methane, the primary component of natural gas. Different methods for converting CO 2 into methane have long been known. Using EEMPA instead reduces the energy needed to fuel such a reaction.
A development team from CoorsTek Membrane Sciences, in collaboration with international research partners, have successfully used ceramic membrane technology to develop a scalable hydrogen generator that makes hydrogen from electricity and fuels including natural gas, biogas and ammonia with near zero energy loss.
Inspired by naturally occurring processes, a team of Boston College chemists used a multi-catalyst system to convert carbon dioxide to methanol at the lowest temperatures reported with high activity and selectivity. It can be produced from hydrogen and carbon dioxide, mitigating greenhouse gas emissions and storing hydrogen in the process.
Audi’s latest e-fuels project is participation in a a pilot plant project in Dresden that produces diesel fuel from water, CO 2 and green electricity. The sunfire plant, which operates according to the “power-to-liquid” (PtL) principle, requires carbon dioxide, water and electricity as raw materials. This fuel—Audi e?diesel—is
HyCOgen, Johnson Matthey’s Reverse WaterGas Shift technology, is a catalyzed process to convert green hydrogen and CO 2 into carbon monoxide (CO), which is combined with additional hydrogen to form synthesis gas (syngas), a crucial building block in the manufacture of fuels and chemicals.
thyssenkrupp’s proprietary water electrolysis technology for the production of. conducted the necessary tests jointly in an existing water electrolysis plant operating as part of the Carbon2Chem project ( earlier post ) in Duisburg. green hydrogen meets the requirements for participation in the primary control reserve market.
Researchers from the Karlsruhe Institute of Technology (KIT) have successfully produced renewable methane from a biomass-based synthesis gas mixture in their pilot plant for methanation using a new honeycomb catalyst. Biogas facilities produce renewable gas mainly by fermenting biological waste. Honeycomb catalyst.
On Saturday, Israel’s Ministry of Energy & Water Resources reported that commercial natural gas production had begun from the deepwater Tamar field (c. Tamar was the world’s largest natural gas discovery in 2009, notes Delek Energy, one of the Tamar partners. Israel natural gas demand forecast 2011-2040. Click to enlarge.
Berlin-based Graforce Hydro GmbH, the developer of a plasma electrolyzer—the Plasmalyzer —is applying its technology for the highly efficient generation of hydrogen from industrial waste water. The current Plasmalyzer offers highly efficient water splitting. Only purified water and oxygen remain as waste products.
For the first time, Lawrence Livermore National Laboratory (LLNL) has published state-by-state energy and water Sankey diagrams in one location so that analysts and policymakers can find all the information they need in one place. General location of energy and water categories. Energy and water generally “flows” from left to right.
With SCR twin dosing technology in the exhaust gas system, the diesel unit now undercuts the Euro 6d emission standard limits while also running quietly and smoothly, according to the company. Volkswagen developed twin dosing technology for the exhaust gas treatment. The second SCR catalytic converter is installed in the vehicle floor.
Michael Grätzel at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland has developed a highly efficient and low-cost water-splitting cell combining an advanced perovskite tandem solar cell and a bi-functional Earth-abundant catalyst. Splitting water requires an applied voltage of at least 1.23 V and up to 1.5
A team of researchers from Canada and the US has developed a system that quickly and efficiently converts carbon dioxide into simple chemicals via CO 2 electrolysis. Here, we present a catalyst:ionomer bulk heterojunction (CIBH) architecture that decouples gas, ion, and electron transport. —García de Arquer. Resources.
The MTG technology was originally developed in the 1970s and was successfully commercialized for a large-scale natural gas to gasoline plant during the 1980s in New Zealand. Sundrop Fuels will use a multi-phase process to convert sustainable forest waste into a bio-based drop-in gasoline for use in today’s combustion engines.
H2One allows for maximum use of the solar power system by converting and storing unstable solar power, which varies depending on the time of day and weather, into hydrogen, and supplies it as electric power on demand. Toranomon Hills Business Tower is a 36-story office tower with a large office area and commercial facilities.
A methanation plant expansion to the existing power-to-gas (PtG) facility in Falkenhagen, Germany has officially opened as part of the international €28-million (US$33.5-million) While the current facility feeds pure hydrogen (“WindGas”) directly into the gas grid, the new methanation plant provides for the generation of “green” methane.
Over the past few months, we have converted it to DME together with our partner FPT. In addition, the valves and valve seat inserts were converted to materials suitable for DME. An electrically driven compressor for precise exhaust gas recirculation is also used. This is done via exhaust gas recirculation (EGR).
The first will react hydrogen with CO 2 to make carbon monoxide (CO) and the second will convert the CO and hydrogen, a blend known as synthesis gas or syngas, into liquid hydrocarbon fuel by Fischer-Tropsch synthesis.
Audi is adding a new member to its A3 family: the A3 Sportback 30 g-tron natural gas vehicle. Operation with natural gas or biomethane makes the compact model economical and more climate-friendly with low emissions. The cylinder head, injection system, turbocharger and catalytic converter were modified accordingly for the CNG engine.
This is a carbon-free hydrogen production method that extracts hydrogen by decomposing water with electricity generated from nuclear power. Source: USNC The MMR is a 4 th Generation High Temperature Gas-cooled Reactor with output from 5-10 MW e and 15-30 MW th ; demonstration units are scheduled for first nuclear power in 2026.
million to 16 water infrastructure projects. Modern technology has the potential to reduce energy use in aging water infrastructure, particularly in wastewater treatment, which demands up to 2% of domestic electricity use each year. The US Department of Energy (DOE) is awarding $27.5
Researchers in Europe led by a team from ETH Zurich have designed a fuel production system that uses water, CO 2 , and sunlight to produce aviation fuel. We are the first to demonstrate the entire thermochemical process chain from water and CO 2 to kerosene in a fully-integrated solar tower system. Zoller et al.
has developed proprietary, breakthrough processes that convert either low-carbon isobutanol or low-value fusel oils—a mixture of alcohols that are byproducts from fermentation processes such as alcohol production—into renewable diesel. Gevo expects this to open yet another door for Gevo products.
The design proved successful in generating hydrogen gas without producing large amounts of harmful byproducts. Generation of H 2 and O 2 from untreated water sources represents a promising alternative to ultrapure water required in contemporary proton exchange membrane-based electrolysis.
OXCCU, a company spun-out from the University of Oxford in 2021 that is focused on converting carbon dioxide and hydrogen into industrial and consumer products ( earlier post ), completed an £18-million (US$22.8 million) Series A financing round. Trafigura, TechEnergy Ventures and Doral Energy-Tech Ventures also participated in the financing.
In the quest to realize artificial photosynthesis to convert sunlight, water, and carbon dioxide into fuel—just as plants do—researchers need to not only identify materials to efficiently perform photoelectrochemical water splitting, but also to understand why a certain material may or may not work.
This output can help to subsidize the process, offsetting the costs of reducing greenhouse gas emissions. In these systems, typically a stream of gas containing carbon dioxide passes through water to deliver carbon dioxide for the electrochemical reaction.
Scientists at Lawrence Berkeley National Laboratory (Berkeley Lab) have demonstrated a new technique, modeled after a metabolic process found in some bacteria, for converting CO 2 into liquid acetate, a key ingredient in “liquid sunlight” or solar fuels produced through artificial photosynthesis.
The team uses green electricity to split water into hydrogen and oxygen in an electrolysis step. The hydrogen is then converted to methanol using a suitable carbon dioxide source such as flue gas in a specially developed process (FlexMethanol). A maximum capacity of 28 liters crude methanol per day is achieved.
The hydrogen gas used in the direct reduction process is produced by electrolysis of water with fossil-free electricity, and can be used directly or stored for later use. We’ll be converting to electric arc furnace in Oxelösund as early as 2025. reduced by 100% fossil-free hydrogen instead of coal and coke, with good results.
Shipping has been one of the fastest-growing sources of greenhouse gas emissions for many years now due to the sharp rise in the trade volume. The methanol is mixed with water, then evaporated by applying heat and fed into the preheated reactor, where the mix of methanol and water is converted into hydrogen and CO 2.
Unlike prior processes for converting alcohols into hydrocarbons with multiple steps for dehydration, oligomerization, and hydrogenation, the Vertimass consolidated alcohol dehydration and oligomerization (CADO) conversion is accomplished in a single reactor system using a metal exchanged zeolite catalyst. Earlier post.).
At the site, landfill gas (LFG) will be the primary fuel to provide power for the non-combustion process that converts waste to hydrogen. The collaboration with Raven’s technology offers a strong renewable hydrogen alternative to electrolysis, using less electricity and no need for fresh water. Earlier post.).
Since 2018, Volkswagen has used only SCR exhaust gas treatment systems with its diesel engines. SCR (selective catalytic reduction) technology significantly reduces nitrogen oxides in the exhaust gas. Adblue is injected selectively upstream of two SCR catalytic converters which are arranged in series.
Bioscience engineers at KU Leuven have created a solar panel that produces hydrogen gas from moisture in the air. A traditional solar panel converts between 18 to 20% of the solar energy into electricity. A traditional solar panel converts between 18 to 20% of the solar energy into electricity.
A research team at the University of Wisconsin–Madison has identified a new way to convert ammonia to nitrogen gas through a process that could be a step toward ammonia replacing carbon-based fuels. This process can be harnessed to produce electricity, with protons and nitrogen gas as byproducts.
For decades, Sasol has been using its Fischer-Tropsch (FT) technology to convert low-grade coal and gas into synthetic fuels and chemicals. There are two ways to convert CO 2 into a useful range of products using FT chemistry. The synthesis gas is then reacted over a suitable FT catalyst, to produce hydrocarbons and water.
The MSG process, under license from Idaho National Laboratory, uses a combination of molten sodium salts (sodium carbonate and sodium hydroxide) to convert a carbon feedstock and water into hydrogen. The MSG process occurs in a single high-pressure reactor in which a carbon-based feedstock and water react with a molten salt bath.
Plasmalysis converts natural gas, LNG, flare gas and other hydrocarbons into hydrogen without emitting CO 2 or any other greenhouse gas into the atmosphere. This allows gas consumers to switch to clean-burning hydrogen without changing their energy supplier or mode of transportation.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content