This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Researchers at the University of Oxford have developed a method to convert CO 2 directly into aviation fuel using a novel, inexpensive iron-based catalyst. Jet fuel can then be obtained from the products after industrially recognized treatments such as distillation or hydro-isomerization.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convertwater into hydrogen fuel using solar energy. Alongside hydrogen generation from water, the multi-disciplinary research team is investigating photochemical conversion of carbon dioxide into synthetic fuel.
Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. This will significantly reduce overall CO 2 emissions.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —senior author Professor Erwin Reisner.
The new system mimics a natural chloroplast to convert carbon dioxide in water into methane, very efficiently using light. Photosynthesis is the process by which chloroplasts in plants and some organisms use sunlight, water and carbon dioxide to create food or energy.
Scottish Enterprise, Transport Scotland and the Hydrogen Accelerator, based at the University of St Andrews, have appointed Arcola Energy and a consortium of industry leaders in hydrogen fuel cell integration, rail engineering and functional safety to deliver Scotland’s first hydrogen powered train.
A study by a team of researchers from Technische Universität Berlin (TUB) and Fritz-Haber-Institut der Max-Planck-Gesellschaft has found that direct seawater splitting for hydrogen production has substantial drawbacks compared to conventional water splitting and offers almost no advantage. Additionally, H 2 O is needed for water splitting.
UK-based ULEMCo has worked with Yorkshire Water to produce what is believed to be the first water tanker anywhere to operate on hydrogen fuel. tonne bowser has been converted from a standard truck to use hydrogen dual fuel, an approach that allows fleet managers to transition more quickly to low carbon operation.
The Alstom Coradia iLint trains ( earlier post ) are outfitted with Cummins fuel cell systems and will run on the world’s first 100%-hydrogen train route in passenger operation. They are powered by Cummins fuel cell systems that convert hydrogen fuel into energy and turn existing, non-electrified infrastructure into zero-emission rail lines.
Audi’s latest e-fuels project is participation in a a pilot plant project in Dresden that produces diesel fuel from water, CO 2 and green electricity. liquid process for the production of synthetic fuel. sunfire acquired staxera, a developer and manufacturer of SOFC high-temperature fuel cells sited in Dresden in 2011.)
Celeroton is expanding its portfolio of fuel cell converters. With the launch of the improved power electronics converter, CC-550-7500 , operating compressors up to 7.5 kW of drive power (at 300 VDC converter input) is now possible for fuel cell stacks of up to 75 kW.
Biocrudes from three representative feedstocks—Spirulina (micro-algae), sewage sludge, and wheat straw—were further upgraded to a mixture of hydrocarbon fuels at Aalborg University (Denmark). Analyses of the kerosene fractions of the upgraded biocrude show promising compositions for a use as aviation fuel.
Johnson Matthey has launched HyCOgen, a technologyt designed to play a pivotal role in enabling the conversion of captured carbon dioxide (CO 2 ) and green hydrogen into sustainable aviation fuel (SAF).
announced the completion of a facility in Tokyo that will convert sewage sludge into renewable hydrogen fuel for fuel cell mobility and power generation. A new facility in Tokyo that will convert sewage sludge into renewable hydrogen gas for fuel-cell vehicles is nearing completion. Ways2H, Inc.
Inspired by naturally occurring processes, a team of Boston College chemists used a multi-catalyst system to convert carbon dioxide to methanol at the lowest temperatures reported with high activity and selectivity. Methanol is a promising renewable fuel that can be adapted to the current liquid fuel infrastructure.
Ethanol is typically produced using biological processes or as a petrochemical, through ethylene hydration, using fossil fuels. This work will see Twelve converting CO 2 to CO, which will in turn be converted by LanzaTech’s proprietary microbe to isopropyl alcohol (IPA).
A team from Fraunhofer IPT is developing a continuous production line that will be able to process fuel cell components in cycles lasting just seconds. The aim of the three institutes, which specialize in the field of manufacturing, is to accelerate the economic breakthrough of fuel cells and electrolyzers both nationally and internationally.
The nanostructured photoelectrode results in spontaneous hydrogen evolution from water without any external bias applied with a faradaic efficiency of 30% and excellent stability. A promising way of storing solar energy is via chemical fuels, in particular hydrogen as it is considered as a future energy carrier. —Pawar and Tahir.
Researchers at the Department of Energy’s Pacific Northwest National Laboratory have developed a new method to convert captured CO 2 into methane, the primary component of natural gas. Different methods for converting CO 2 into methane have long been known. Using EEMPA instead reduces the energy needed to fuel such a reaction.
In this regard, photocatalytic water splitting has attracted significant interest as a cost-effective means to convert sustainable solar energy into valuable chemicals. Efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production. Credit: DICP. —Wang et al.
Energy Vault, a company developing grid-scale gravity energy storage solutions, has entered into an energy storage system agreement with DG Fuels, a developer of renewable hydrogen and biogenic-based, synthetic sustainable aviation fuel (SAF) and diesel fuel. DG Fuels expects to complete its Louisiana SAF project by mid-2022.
OXCCU, a company spun-out from the University of Oxford in 2021 that is focused on converting carbon dioxide and hydrogen into industrial and consumer products ( earlier post ), completed an £18-million (US$22.8 million) Series A financing round.
Airbus is developing a hydrogen-powered fuel cell engine. Airbus will start ground and flight testing this fuel cell engine architecture onboard its ZEROe demonstrator aircraft towards the middle of the decade. A hydrogen gas turbine can also be coupled with fuel cells instead of batteries in a hybrid-electric architecture.
MAHLE has developed two standardized air filter solutions for fuel cells. The new MAHLE air filters for cells with an output of 25–50 kW or 80–120 kW reliably protect fuel cells from harmful gases and particles, ensuring the operation of the fuel cell over the entire service life of a vehicle and minimizing the use of expensive catalysts.
The EU-funded HyMethShip project developed a system that innovatively combined a membrane reactor, a CO 2 capture system, a storage system for CO 2 and methanol as well as a hydrogen-fueled combustion engine to power ships. The top part of the graphic shows onshore methanol production. The system’s technical centerpiece is the reactor.
The US Department of Energy’s (DOE’s) Advanced Research Projects Agency - Energy (ARPA-E) will award $38 million to 12 projects that will work to reduce the impacts of light-water reactor used nuclear fuel (UNF) disposal. Most of the nation’s used fuel is stored at more than 70 reactor sites across the country. Earlier post.)
Toyota is developing a regenerative fuel cell for the manned pressurized rover (nicknamed the “ Lunar Cruiser ”) for the lunar polar exploration mission (LUPEX), part of projects led by the Japan Aerospace Exploration Agency (JAXA). One of those is the regenerative fuel cell (RFC) system. Earlier post.)
GM announced new commercial applications of its HYDROTEC fuel cell technology. These fuel cell generators could ultimately replace gas- and diesel-burning generators with fewer emissions at worksites, buildings, movie sets, data centers, outdoor concerts and festivals. Mobile Power Generator.
ETH Zurich spin-off Synhelion has started the construction of DAWN—its own industrial plant to produce synthetic fuels using solar heat. Located in Jülich, Germany, the facility will demonstrate the entire process from concentrating sunlight to producing synthetic liquid fuel on an industrial scale. Earlier post.)
Empa, together with FPT Motorenforschung AG Arbon, Politechnico di Milano, lubricant manufacturer Motorex and other partners, is exporing the use of DME as a fuel for heavy-duty engines. Over the past few months, we have converted it to DME together with our partner FPT. Water is formed as a by-product. —Patrik Soltic.
thyssenkrupp’s proprietary water electrolysis technology for the production of. conducted the necessary tests jointly in an existing water electrolysis plant operating as part of the Carbon2Chem project ( earlier post ) in Duisburg. green hydrogen meets the requirements for participation in the primary control reserve market.
and their partners, designed and built a fuel cell range extender system for battery-electric buses. Depending on a power demand sent by the vehicle, the fuel cell system generates the power needed for the propulsion of the vehicle as well as charges the vehicle’s traction battery. The range extender includes a system with two stacks.
Methanol fuel cell developer and manufacturer Blue World Technologies ( earlier post ) is starting limited production—the first step in commercializing its methanol fuel cell technology. The fuel cell control unit governs the fuel cell system as well as communicates with the vehicle. Methanol fuel cell production.
Researchers in Europe led by a team from ETH Zurich have designed a fuel production system that uses water, CO 2 , and sunlight to produce aviation fuel. We are the first to demonstrate the entire thermochemical process chain from water and CO 2 to kerosene in a fully-integrated solar tower system. Zoller et al.
Berlin-based Graforce Hydro GmbH, the developer of a plasma electrolyzer—the Plasmalyzer —is applying its technology for the highly efficient generation of hydrogen from industrial waste water. The technology we’ve developed is capable of cleaning wastewater and producing a low-cost, low-emission fuel from it.
The new kind of jet mixer extracts lipids from algae with much less energy than the older extraction method, a key discovery that now puts this form of energy closer to becoming a viable, cost-effective alternative fuel. However, scalable high energy density alternatives to fossil fuels remain challenging. corn), microorganisms (e.g.,
The UK Department for Transport has shortlisted 8 industry-led projects to receive a share of £15 million (US$21 million) in the Green Fuels, Green Skies (GFGS) competition for the development of sustainable aviation fuels (SAF) production plants in the UK. It could also increase UK fuel security. Green Fuels Research Ltd.
For the first time, Lawrence Livermore National Laboratory (LLNL) has published state-by-state energy and water Sankey diagrams in one location so that analysts and policymakers can find all the information they need in one place. General location of energy and water categories. Energy and water generally “flows” from left to right.
The new bus model in the Augsburg-based company’s bus portfolio will be launched as an all-electric version (CIZARIS 12 EV), followed in 2023 by a fuel cell drive (CIZARIS 12 H) that uses a largely identical powertrain. With the introduction of the fuel cell version, an even more powerful powertrain will be used.
For 2021, Toyota has fully rebooted the Mirai, originally offered in 2016, as a premium rear-wheel drive sports-luxury fuel cell electric vehicle (FCEV) with striking design, cutting-edge technology, more engaging driving performance and a significantly longer EPA-estimated range rating.
University of Colorado Boulder researchers have developed nanobio-hybrid organisms capable of using airborne carbon dioxide and nitrogen to produce a variety of plastics and fuels, a promising first step toward low-cost carbon sequestration and eco-friendly manufacturing for chemicals. Ding et al.
H2One consists of a hydrogen generator, a hydrogen storage tank, and hydrogen fuel cells, and batteries. H2One allows for maximum use of the solar power system by converting and storing unstable solar power, which varies depending on the time of day and weather, into hydrogen, and supplies it as electric power on demand.
Toyota Motor Corporation has developed a product that packages a fuel cell (FC) system into a compact module; the company plans to begin selling it in the spring of 2021 or later. thanks to a built-in, dedicated FC boost converter that simplifies the development and manufacture of FC products.
In collaboration with NE, DOE’s Hydrogen and Fuel Cell Technologies Office will provide funding and project oversight for the two hydrogen production–related projects that were selected: General Electric Global Research, Scaled Solid Oxide Co-Electrolysis for Low-Cost Syngas Synthesis from Nuclear Energy.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content