This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Scottish Enterprise, Transport Scotland and the Hydrogen Accelerator, based at the University of St Andrews, have appointed Arcola Energy and a consortium of industry leaders in hydrogen fuel cell integration, rail engineering and functional safety to deliver Scotland’s first hydrogen powered train.
AW-Energy Oy is entering the commercial hydrogen market by introducing a combined WaveRoller and HydrogenHub process for the production of green hydrogen. In AW-Energy’s concept, wave energy complements solar power production to enable large-scale green hydrogen. —Christopher Ridgewell.
Toshiba Energy Systems & Solutions Corporation (Toshiba ESS) announced that its hydrogen-based autonomous energy supply system H2One, which Toshiba ESS delivered and installed on the rooftop of Toranomon Hills Business Tower (Minato-ku, Tokyo), has started full-scale operation with the opening of commercial facilities.
A Siemens Energy-led consortium has begun work in Newcastle, UK on a new £3.5 million) ammonia cracker prototype designed to produce green hydrogen at industrial scale. The prototype will use ammonia to deliver 200kg of hydrogen a day—enough to power around 5-10 hydrogen fuel cell-electric buses. million (US$4.24
Renewable hydrogen systems manufacturer Ways2H Inc. and its shareholder and technical partner Japan Blue Energy Co. announced the completion of a facility in Tokyo that will convert sewage sludge into renewable hydrogen fuel for fuel cell mobility and power generation. The technology was developed by Japan Blue Energy Co.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. The microstructured optical fiber canes (MOFCs) with photocatalyst generate hydrogen that could power a wide range of sustainable applications.
Transform Materials has developed a novel and sustainable microwave plasma reactor process to convert natural gas into high-value hydrogen and acetylene, thereby opening up a new pathway for green chemical manufacturing. Acetylene can be then converted into many derivative chemicals, all possessing high value.
Citroën is supplementing its range of electric LCVs with hydrogen technology to meet the needs of the 8% of companies required to make journeys of more than 300 km (186 miles) or lacking the time to recharge their vehicle during the day. ë-Jumpy Hydrogen is fully electric and benefits from two energy sources: a 45 kW fuel cell and a 10.5
The US Department of Energy (DOE) closed on a $504.4-million million loan guarantee to the Advanced Clean Energy Storage project in Delta, Utah (ACES Delta)—marking the first loan guarantee for a new clean energy technology project from DOE’s Loan Programs Office (LPO) since 2014.
Researchers from Japan’s NIMS (National Institute for Materials Science), the University of Tokyo and Hiroshima University have jointly conducted a techno-economic analysis for hydrogen production from photovoltaic power generation (PV) utilizing a battery-assisted electrolyzer. This approximately converts to US$1.92 to US$3.00/kg
Researchers at the University of Oxford have developed a method to convert CO 2 directly into aviation fuel using a novel, inexpensive iron-based catalyst. Jet fuel synthesis via CO 2 hydrogenation initially takes place by the RWGS reaction (CO 2 ?+?H The final product is usually a crystallized material.
The Yongsoo wave energy power plant, installed at berth 1 in the Korean Institute KRISO -Wave Energy Test Site (WETS), is preparing to produce green hydrogen from next year, according to a report from Ocean Energy Systems. The Yongsoo plant is a 500 kW fixed oscillating water column (OWC)-type wave energyconverter.
ULEMCo, the UK company converting commercial vehicles to run on hydrogen, has commenced the largest single deployment of hydrogen dual fuel vehicles yet. This follows an order secured with Scottish company James A Cuthbertson Ltd, to transform Glasgow City Council’s existing fleet and some new gritters to be hydrogen-enabled.
Methanol reformers convert easy-to-transport methanol into hydrogen. Transporting hydrogen can be a complex process. Transporting hydrogen can be a complex process. This paves the way for the production of green hydrogen in sunny regions and its conversion into methanol and its simplified transport.
Bakken Energy, a developer of affordable clean hydrogen supply, signed a Memorandum of Understanding with each of Cummins Inc. to work together on the design of the Heartland Hydrogen Hub to serve the needs of long-haul trucking. The industry-led Hub will include Bakken Energy’s large scale affordable clean hydrogen production.
A microgrid based on renewable energies with hydrogen-powered fuel cells for emergency and peak power as well as hydrogen combustion engines can meet the special energy requirements of port facilities. It will not only set new standards in cargo handling, but also in climate-friendly energy supply.
HydroWing, in partnership with Tocardo, introduced the THyPSO (Tidal Hydrogen production, Storage and Offtake), a concept that creates green hydrogen from the sea, contributing to the wider global decarbonization of energy systems.
The BMW Group is beginning to test near-standard vehicles with a hydrogen fuel cell drive train in everyday conditions on European roads. Prototypes of the BMW i Hydrogen NEXT will examine how effectively the CO 2 -free drive train, model-specific chassis technology and vehicle electronics systems work together under real-life conditions.
Researchers at the Fraunhofer IFF in Germany are designing the distributed and modular production and distribution of green hydrogen for industry, business and transportation throughout the value chain—a hydrogen factory of the future. The hydrogen factory of the future. The outcome is always green hydrogen.
Energy infrastructure developer Bakken Energy (Bakken) has reached agreement with Basin Electric Power Cooperative (Basin Electric) on key terms and conditions to purchase the assets of the Dakota Gasification Company (Dakota Gas), a subsidiary of Basin Electric, and the owner of the Great Plains Synfuels Plant.
Researchers at The Ohio State University have used a chemical looping process to produce hydrogen from hydrogen sulfide gas—commonly called “sewer gas”. Hydrogen sulfide is emitted from manure piles and sewer pipes and is a key byproduct of industrial activities including refining oil and gas, producing paper and mining.
The BMW Group will pilot the second generation of hydrogen fuel cell drives in a small series in the BMW i Hydrogen NEXT based on the current BMW X5 from 2022. The drive in the BMW i Hydrogen NEXT. The system performance of the BMW i Hydrogen NEXT comes to a total of 275 kW (374 hp) and ensures typical BMW driving dynamics.
The US Department of Energy (DOE) awarded $22.1 million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. This funding opportunity is administered by DOE’s Office of Nuclear Energy (NE).
A development team from CoorsTek Membrane Sciences, in collaboration with international research partners, have successfully used ceramic membrane technology to develop a scalable hydrogen generator that makes hydrogen from electricity and fuels including natural gas, biogas and ammonia with near zero energy loss.
Electro-Active Technologies has exclusively licensed two biorefinery technologies invented and patented by the startup’s co-founders while working at the Department of Energy’s Oak Ridge National Laboratory. The technologies work as a system that converts organic waste into renewable hydrogen gas for use as a biofuel.
The Yuchai YCK16H hydrogen-fueled engine was successfully ignited in Yulin, Guangxi. liters and a maximum horsepower of 560 hp, is the largest hydrogen-fueled engine with the largest displacement and horsepower in China. He said that the new energy engine field has developed rapidly in recent years.
Energy Vault, a company developing grid-scale gravity energy storage solutions, has entered into an energy storage system agreement with DG Fuels, a developer of renewable hydrogen and biogenic-based, synthetic sustainable aviation fuel (SAF) and diesel fuel. The Louisiana facility is the company’s first major project.
GKN Hydrogen and Southern California Gas Co. SoCalGas) will work with the US Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL) on an innovative green hydrogen storage solution. GKN Hydrogen’s HY2MEGA can enable safe, long duration clean energy storage without the need for compression.
The EU project HyInHeat is researching the use of hydrogen in the aluminum and steel industry. The main objective of HyInHeat is the integration of hydrogen as fuel for high-temperature heating processes in the energy-intensive industries. The EU is contributing €17.7 million in funding to the €24-million project.
Airbus is developing a hydrogen-powered fuel cell engine. The A380 MSN1 flight test aircraft for new hydrogen technologies is currently being modified to carry liquid hydrogen tanks and their associated distribution systems. There are two ways hydrogen can be used as a power source for aircraft propulsion. Earlier post.).
Engineers from UNSW Sydney (Australia) have successfully converted a diesel engine to run as a dual-fuel hydrogen-diesel engine, reducing CO 2 emissions by more than 85% compared to conventional diesel. In a paper published in the International Journal of HydrogenEnergy, Prof. CO 2 reduction and 13.3% —Liu et al.
to support its commercial-scale, emissions-free hydrogen manufacturing technology. Monolith Materials is the first US manufacturer to produce “turquoise hydrogen” on a commercial scale. Monolith’s hydrogen is classified as “turquoise hydrogen”. Monolith Materials, Inc. Monolith process.
In March, Toyota’s GR Corolla H2 Concept (liquid hydrogen-powered Corolla) suffered a fire during a tet run and withdrew from the opening of the ENEOS Super Taikyu Series 2023 Powered by Hankook Round 1 Suzuka. Toyota says that the fire was caused by a loosened joint in the hydrogen supply piping. Earlier post.)
Ricardo has developed a hydrogen-fueled research engine which could offer a renewable, economic and durable technology solution to accelerate zero-carbon emissions in heavy duty trucks, off-highway machines and marine vessels. —Adrian Greaney, Director of Technology and Digital at Ricardo Automotive and Industrial EMEA Division.
Rolls-Royce and easyJet report the world’s first run of a modern aero engine on hydrogen. The ground test was conducted on an early concept demonstrator using green hydrogen created by wind and tidal power. The success of this hydrogen test is an exciting milestone. —Grazia Vittadini, Chief Technology Officer, Rolls-Royce.
More than 14 tonnes of CO 2 was saved in a two-year trial involving just 11 urban trucks and vans running on green hydrogen dual fuel. That is one result of the Low Emission Freight and Logistics Trial (LEFT) project to investigate the practical deployment of hydrogen powered vehicles in the UK.
Syzygy Plasmonics , LOTTE Chemical and LOTTE Fine Chemical (LOTTE Chemical HQ), and Sumitomo Corporation of Americas (SCOA) announced a joint development agreement to test a photocatalytic reactor for clean hydrogen production. Among other climate-focused goals, the company is setting the stage to advance the hydrogen economy in Korea.
and Toyota Motor Corporation have entered into an agreement to collaborate on development of test railway vehicles equipped with hybrid systems that use hydrogen powered fuel cells and storage batteries as their source of electricity. The project is named HYBARI (HYdrogen-HYBrid Advanced Rail vehicle for Innovation).
The research focuses on zero-carbon hydrogen and other low-carbon fuels as viable alternatives to diesel for the rail industry. Hydrogen as fuel has many advantages, but locomotive engines must be modified to ensure safe, efficient and clean operation. Hydrogen has been used in light-duty combustion engines.
The BMW iX5 Hydrogen ( earlier post ) is currently undergoing testing in extremely challenging winter weather conditions on public roads and at the BMW Group’s testing center in Arjeplog, northern Sweden. The tests close to the Arctic Circle see the BMW Group pressing ahead with its development process for the BMW iX5 Hydrogen.
The implementation of this project, the first industrial-scale power-to-X-to-power demonstrator with an advanced hydrogen turbine, will be launched at Smurfit Kappa PRF’s site—a company specialized in manufacturing recycled paper—in Saillat-sur-Vienne, France. In this case, the “X” will be hydrogen.
Researchers at Illinois Institute of Technology (IIT), with colleagues at the University of Pennsylvania and the University of Illinois at Chicago have developed an electrolyzer capable of converting carbon dioxide into propane in a manner that is both scalable and economically viable. Nat Energy doi: 10.1038/s41560-023-01314-8
The CMA CGM Group, a world leader in shipping and logistics, is joining forces with Energy Observer , the first hydrogen-powered vessel to embark on a round-the-world voyage. Energy Observer , formerly a racing catamaran, is now an experimental platform for tomorrow’s energy sources. Earlier post.).
A team from Hamad Bin Khalifa University in Qatar has comprehensively reviewed various ammonia decomposition techniques to produce clean hydrogen by recovering the boil-off ammonia while integrating solar energy infrastructures onboard a ship for electricity and heat requirements. The review paper is published in the journal Fuel.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content