This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Meanwhile, wet waste feedstocks, such as animal manure and fats, oils, and greases (FOG), represent another important category of resources that could be utilized to produce MCCI bioblendstocks due to its abundant availability. An open-access paper on their results is published in the journal ACS Sustainable Chemistry & Engineering.
Washington State University researchers have developed an innovative way to convertwaste polyethylene plastic to ingredients for jet fuel and other valuable products, making it easier and more cost-effective to reuse plastics. In the recycling industry, the cost of recycling is key. —Hongfei Lin. —Jia et al.
At the hubs, which can be built at or near landfills, Raven SR will convert mixed and multiple organic wastes, including municipal solid waste, greenwaste, food waste, medical, paper, etc. Raven can also easily process natural and renewable gases alone or combined with solid waste. 22 CCR § 66260.10 Definitions).
Alfa Laval is introducing the E-PowerPack waste heat recovery system for ships. Able to convertwaste heat directly into electrical power, the E-PowerPack uses Organic Rankine Cycle (ORC) technology to reduce ship fuel consumption and CO 2 emissions.
Idemitsu Kosan, one of Japan’s leading producers and suppliers of energy, has launched a feasibility study of clean hydrogen production in Japan generated from waste, including municipal waste. The goal is to launch a first hydrogen production facility around 2030 capable of processing 200-300 tons of waste per day.
to Fulcrum Sierra Biofuels, LLC to build a biorefinery to produce jet fuel from municipal solid waste (MSW) via a proprietary two-stage thermochemical process. USDA Rural Development’s loan guarantee represents less than half of the $266 million project cost. Earlier post.). which received a $12.8-million
A team from the University of Calgary and Rice University has used flash joule heating (FJH) ( earlier post ) to convert low-value asphaltenes—a by-product of crude oil refining—into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG). Flash graphene from asphaltenes. (A)
The EU-funded research project HyFlexFuel recently successfully produced biocrudes via hydrothermal liquefaction (HTL) from a variety of biomasses, including sewage sludge, food waste, manure, wheat straw, corn stover, pine sawdust, miscanthus and microalgae in a pilot-scale continuous HTL plant at Aarhus University (Denmark).
An EU-funded project, Biogas2PEM-FC , has developed a system to convert the toxic waste from olive oil production into electricity. The waste from olive oil production—which contains pesticides and toxic organic compounds, is acidic and with a high salinity—is environmentally harmful and costly to discard.
SUEZ Environnement and Déinove ( earlier post ) are collaborating on an R&D program to explore the development of a process to convert organic urban waste into ethanol using Deinococcus bacteria. This organic waste is currently mainly recovered via composting and methanization. The two companies have signed a two-year agreement.
The funding will help Sierra Energy further develop and commercialize its FastOx gasification technology, which converts virtually any waste into clean, renewable energy and fuels without burning. Waste is fed into the top of the gasifier vessel through an airlock. Purified oxygen and steam are injected into the base.
A team of scientists from LanzaTech, Northwestern University and the Department of Energy’s Oak Ridge National Laboratory have engineered a microbe to convert molecules of industrial waste gases, such as carbon dioxide and carbon monoxide, into acetone and isopropanol (IPA). —Jennifer Holmgren, CEO of LanzaTech.
The company says that some of the most promising projects are the Turbosteamer ( earlier post ); the Thermoelectric generator (TEG) ( earlier post ); engine encapsulation; and a waste heat exchanger for oil heating. —Jürgen Ringler, Team Leader for Thermal Energy Converters at BMW Group Research and Technology. Click to enlarge.
bp ventures has committed $10 million, leading the Series B investment round, in WasteFuel , a California-based biofuels company that will use proven, scalable technologies to convert bio-based municipal and agricultural waste into lower carbon fuels, such as biomethanol. billion metric tons by 2050.
In Australia, QUT researchers and Mercurius Australia are partnering on a pilot plant to prove the economic viability of turning sugarcane waste into either jet and diesel fuel or chemicals that could be used to make plastic soft drink and beer bottles. Does not use enzymes or microbes therefore it is not sensitive to feedstock impurities.
Starting from a energy-based powertrain simulation model validated on experimental data from the PHEV, the researchers conducted a first- and second-law analysis to identify the potential for engine waste heat recovery, considering a variety of driving cycles and assuming the vehicle operating in charge-sustaining (HEV) mode. Power from ORC.
Lithium Australia NL reported that its wholly owned subsidiary VSPC Ltd has successfully produced Li-ion battery cathode material, and Li-ion batteries (LIBs), from tri-lithium phosphate produced directly from mine waste using the SiLeach process. LFP and batteries from waste. SiLeach background. Reactions occur rapidly at about 90 ?C,
GTI has released a site-specific engineering design titled “ Low-Carbon Renewable Natural Gas (RNG) from Wood Wastes ”. GTI led a team of engineers and scientists to produce a blueprint for converting an existing biomass facility into an RNG production site, using the wood waste feedstock and some of the existing infrastructure.
a waste-to-biofuels and chemicals producer, has signed an agreement with AkzoNobel, a leading global paints and coatings company and a major producer of specialty chemicals, to develop a project partnership to explore the development of waste-to-chemicals facilities in Europe. Enerkem Inc.,
Management believes that this will lead to lower operating and feedstock costs. Lignin may be further converted into biodegradable bioplastics or used in ion exchange resins. The cellulose and hemicellulose is broken down and converted to its C 5 and C 6 sugars, leaving a high purity lignin as a byproduct.
Rice University scientists and their colleagues at C-Crete Technologies have optimized a process to convertwaste from rubber tires into graphene that can, in turn, be used to strengthen concrete. After useful oils are extracted from waste tires, this carbon residue has until now had near-zero value, Tour said. 2021.03.020.
the strategic investment arm of South Korea’s SK Group, was part of a $50-million investment in Fulcrum BioEnergy, a US-based waste-to-fuels company. Fulcrum produce biofuel on a commercial scale by chemically converting municipal solid waste (MSW) into transportation fuels. Founded in Pleasanton, Calif.,
BP and Johnson Matthey (JM) have signed an agreement with Fulcrum BioEnergy to license their Fischer Tropsch (FT) technology to support Fulcrum’s drive to convert municipal solid waste into biojet fuel.
A patented process for converting alcohol sourced from renewable or industrial waste gases into jet or diesel fuel is being scaled up at the US Department of Energy’s Pacific Northwest National Laboratory with the help of partners at Oregon State University and the carbon-recycling experts at LanzaTech. Image: Oregon State University).
Researchers at Queen’s University Belfast have developed a novel green route to convert aluminium foil waste into highly active nano-mesoporous alumina (γ-Al 2 O 3 ) (designated as ACFL550). In the UK, around 20,000 tonnes of aluminium foil packaging is wasted each year. 2 O and Al(NO 3 ) 3.9H 2 O and Al(NO 3 ) 3.9H
Berlin-based Graforce Hydro GmbH, the developer of a plasma electrolyzer—the Plasmalyzer —is applying its technology for the highly efficient generation of hydrogen from industrial waste water. The technology we’ve developed is capable of cleaning wastewater and producing a low-cost, low-emission fuel from it.
In May, researchers at MIT and Stanford University reported the development of new battery technology for the conversion of low-temperature waste heat into electricity in cases where temperature differences are less than 100 ?Celsius. converting heat to electricity. Batteries Waste Heat Recovery' Earlier post.).
In Italy, Eni and Hera signed a partnership agreement with the aim of converting used vegetable oil into renewable diesel for Hera’s waste collection vehicles. The agreement revolves around household waste vegetable oil, such as that used for frying, collected by Hera in around 400 roadside containers and about 120 collection centres.
In a new report , Lux Research analysts have examined the costs and availability of cellulosic biomass sources for use as feedstock in bio-based fuels and chemicals. billion tons of municipal solid waste (MSW) costs vary widely. Lux Research analysts examined the cost and availability of eight cellulosic biomass sources.
The composite blocks can be made from low-cost and locally sourced materials, including the excavated soil at the construction site, but can also utilize waste materials such as mine tailings, coal combustion residuals (coal ash), and fiberglass from decommissioned wind turbine blades. barrel per ton of feedstock.
Researchers at the University of have developed an unusually rapid method to deliver cost-effective algal biocrude in large quantities using a specially-designed jet mixer. Algal biocrude obtained from CIJMs converts successfully into biodiesel, and cascades of CIJMs increase the net lipid production.
The Dearman project is to deliver a production-feasible waste-heat recovery system for urban commercial vehicles, which offers life-cycle CO 2 savings of up to 40%; fuel savings of 25%, with the potential of up to almost 50%; and potential payback in less than three years. The IDP10-funded project will cost £3.25 Earlier post. ).
Biomass feedstocks can be produced by municipal solid waste (MSW) streams and algae and converted into low-carbon fuels that can significantly contribute to the decarbonization of transportation sectors that face barriers to electrification, such as aviation and marine. Federal share. Cascadia Consulting Group. 2,761,304.
A large-scale demonstration converting biocrude to renewable diesel fuel has passed a significant test, operating for more than 2,000 hours continuously without losing effectiveness. The biocrude oil came from many different sources, including wastewater sludge from Detroit, and food waste collected from prison and an army base.
Commercial truck fleet operators with Hydra-converted semi-trucks can access green hydrogen at a fixed price, five percent below the price they typically pay for diesel. The company’s distinctive HaaS model helps commercial fleets reduce costs and emissions with limited risk and no up-front investment.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —Dr Wang.
The projects, led by universities, private companies, and national laboratories, were selected to develop technologies to advance UNF recycling, reduce the volume of high-level waste requiring permanent disposal, and provide safe domestic advanced reactor fuel stocks. Award amount: $4,900,000). Award amount: $1,580,774).
Methanol reformers convert easy-to-transport methanol into hydrogen. Converting hydrogen into methanol can provide a solution, as not only is methanol much easier to transport than hydrogen, it can also be stored almost unlimited at ambient pressure. However, conventional reformers have a number of drawbacks such as catalyst attrition.
has developed a proprietary catalytic process that transforms low-cost commercially available, or even waste by-product, renewable alcohols into renewable isoprene that would be expected to compete head-to-head on price with natural and petroleum-based chemical equivalents while reducing CO 2 emissions.
million in funding for projects focused on producing cost-effective, low-carbon biofuels. The topic areas include high-impact biotechnology research, development, and demonstration to bolster the body of scientific and engineering knowledge needed to produce low-carbon biofuels at a lower cost. Award amount: $2,800,000).
Researchers used reductive etherification chemistry to convert alcohol and ketone substrates derived from microbial carboxylic acids into an ether bioblendstock for use when blended into conventional diesel fuel. Production of renewable diesel bioblendstocks through reductive etherification of alcohols and ketones. Hafenstine et al.
Under the FOCUS program, projects will develop advanced solar converters that turn sunlight into electricity for immediate use, while also producing heat that can be stored at low cost for later use as well as innovative storage systems that accept both heat and electricity from variable solar sources. Earlier post.). Source: ARPA-E.
Using existing fish processing plants, kelp and fish waste can be turned into a diesel-like fuel to power generators or fishing boats in rural, coastal Alaska, according to a team from Pacific Northwest National Laboratory (PNNL). The waste-to-energy fuel could then be used to power generators or fishing boats.
The Swiss company Climeworks is building the world’s largest direct air capture (DAC) and storage facility for converting atmospheric CO 2 to rock in Iceland. C using waste heat from a nearby geothermal plant to release the CO 2 molecules. Its volcanic origin makes the country one of the world’s most potent geothermal regions.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content