This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Meanwhile, wet waste feedstocks, such as animal manure and fats, oils, and greases (FOG), represent another important category of resources that could be utilized to produce MCCI bioblendstocks due to its abundant availability. An open-access paper on their results is published in the journal ACS Sustainable Chemistry & Engineering.
With this zero-waste car, the team wants to show that waste can be a valuable material with a multitude of applications. Luca, the world’s first Zero-Waste car. During the UBQ conversion process, the unsorted residual waste stream is reduced into its more basic natural components. Photo by Bart van Overbeeke.
A photobioreactor and algae perform the “water recycling”; the pelletized solid waste material will be used in the gasifier. has launched the first zero-waste chemical biorefinery in the US in Missoula, Montana. If we have fixed feedstock [such as the waste spent grain], we have price stability. Source: Blue Marble.
Here, we report the bulk-scale conversion of asphaltenes into a stable, naturally occurring form of carbon, namely, graphene, using a single-step, low-cost, energy-efficient, recyclable, scalable, and sustainable technique called flash joule heating (FJH). —Saadi et al.
Researchers have shown that magnesium industrial wastes of AZ91 alloy and Mg-10 wt.% The conversion process is possible and easily achievable, they noted. Resources. Dornheim (2014) Hydrogen storage systems from waste Mg alloys, Journal of Power Sources , Volume 270 Pages 554-563 doi: 10.1016/j.jpowsour.2014.07.129.
The reaction network involves the sequential conversion of polymer into the oil with a gradual decrease of molecular weight until ?700–800 Vlachos (2021) “Polypropylene Plastic WasteConversion to Lubricants over Ru/TiO 2 Catalysts” ACS Catalysis doi: 10.1021/acscatal.1c00874. Kots, Sibao Liu, Brandon C. 1c00874.
Researchers at MIT and Stanford University have developed new battery technology for the conversion of low-temperature waste heat into electricity in cases where temperature differences are less than 100 degrees Celsius. These features lead to a high heat-to-electricity energy conversion efficiency of 5.7% Click to enlarge.
ReactWell , LLC, has licensed a novel waste-to-fuel technology from the Department of Energy’s Oak Ridge National Laboratory to improve energy conversion methods for cleaner, more efficient oil and gas, chemical and bioenergy production. It can be used by refineries to upgrade their feedstock or to convert biomass to oil.
This will make it possible to realize a simple and compact system for capturing and converting wasted carbon dioxide from incinerators and electric generation plants, according to Panasonic. The conversion efficiency of solar energy to chemical energy was 0.03-0.04%. Hiroshi Hashiba et al. 243904 doi: 10.1063/1.4729298.
Rice University scientists and their colleagues at C-Crete Technologies have optimized a process to convert waste from rubber tires into graphene that can, in turn, be used to strengthen concrete. After useful oils are extracted from waste tires, this carbon residue has until now had near-zero value, Tour said. —James Tour.
Scientists at Daegu Gyeongbuk Institute of Science and Technology, Korea, have developed a novel heterostructured photocatalyst using titanium and copper, two abundant and relatively inexpensive metals, for the conversion of CO 2 into CH 4. Apart from its CO 2 conversion capabilities, the proposed photocatalyst has other benefits.
GTI has released a site-specific engineering design titled “ Low-Carbon Renewable Natural Gas (RNG) from Wood Wastes ”. GTI led a team of engineers and scientists to produce a blueprint for converting an existing biomass facility into an RNG production site, using the wood waste feedstock and some of the existing infrastructure.
Starting from a energy-based powertrain simulation model validated on experimental data from the PHEV, the researchers conducted a first- and second-law analysis to identify the potential for engine waste heat recovery, considering a variety of driving cycles and assuming the vehicle operating in charge-sustaining (HEV) mode. Power from ORC.
A team at the Universidad Politécnica de Valencia (Spain) has designed a new simple, energy-efficient process (that also does not require any organic solvents) for the production of renewable diesel from biomass waste. The first step is the conversion of biomass into furfural—an established industrial process. —Corma et al.
DE-FOA-0002423 ) Topic Areas ins the FOA support DOE’s Bioenergy Technologies Office’s (BETO’s) objectives to reduce the minimum selling price of drop-in biofuels, lower the cost of biopower, and enable high-value products from biomass or wasteresources. Development of novel methods for rapid/real-time measurements.
Researchers at Penn State University have demonstrated the efficient conversion of low-grade thermal energy into electrical power using a thermally regenerative ammonia-based battery (TRAB). To “recharge”, the TRAB uses low-grade waste heat from an outside source. Batteries Waste Heat Recovery' Then the reaction stops.
In May, researchers at MIT and Stanford University reported the development of new battery technology for the conversion of low-temperature waste heat into electricity in cases where temperature differences are less than 100 ?Celsius. Batteries Waste Heat Recovery' Earlier post.). discharging at low temperature. …We
Researchers at the University of Minnesota have demonstrated a new method for the direct conversion of heat to electricity using a multiferroic alloy, Ni 45 Co 5 Mn 40 Sn 10 , which they had discovered earlier (Srivastava 2010). 2011), The Direct Conversion of Heat to Electricity Using Multiferroic Alloys. —Srivastava 2011.
A team of scientists from LanzaTech, Northwestern University and the Department of Energy’s Oak Ridge National Laboratory have engineered a microbe to convert molecules of industrial waste gases, such as carbon dioxide and carbon monoxide, into acetone and isopropanol (IPA). —Jennifer Holmgren, CEO of LanzaTech. Abdalla, T.
Both the USDA ARS and BIOF will supply resources needed for the project. BIOF has a research farm near Arcadia, Florida, upon which king grass is growing, and facilities for conducting tests for productions trials; The USDA ARS will supply expertise and harvesting equipment to collect materials for storage, processing, and conversion by BIOF.
Photocatalytic water splitting has attracted great interest as a means of cost-effective conversion of sustainable solar energy to valuable chemicals. —Wang et al. This work was supported by the National Natural Science Foundation of China. 2021.01.001.
The recycling of plastic waste plays a large conceptual role in the quesst for the realization of a circular economy. Polypropylene constitutes about 30% of all plastic waste. Martin, Javier Pérez-Ramírez (2021) “Direct Conversion of Polypropylene into Liquid Hydrocarbons on Carbon?Supported Shibashish D. Jaydev, Antonio J.
With this research, we looked to make a new biofuel conversion process that is relevant and applicable to renewable and waste-to-energy technology. In addition, researchers are testing how the catalyst performs with more complex waste materials that produce a mixture of ethers besides 4-butoxyheptane. Hafenstine, Nabila A.
The carbon found in municipal solid waste, which is piling up in landfills or being incinerated globally, can play a critical role in eliminating the virgin fossil resources used to make fuels and chemicals. It is a testament to the UAE’s leadership and strong sustainability agenda that our technology has found a home here.
The process is closed and uses industrial waste CO 2 at concentrations 50–100 times higher than atmospheric. Sum of individual contributions and accumulated photon losses for two fuel processes and a theoretical maximum for energy conversion. Source: Robertson et al. —Robertson et al. Robertson, Stuart A. Church and Noubar B.
The resulting blend exhibits properties similar to conventional biodiesel, while reducing waste and improving conversion. The generation of glycerol not only represents a notable performance loss in the process, it is also creating an enormous waste problem. —Calero et al. Juan Calero, Diego Luna, Enrique D.
Researchers in China have developed a novel free-piston linear generator (FPLG) to recover exhaust waste heat efficiently from a vehicle engine. reports that the energy conversion efficiency of the FPLG can reach up to 45.82% with an intake pressure of 2.6 In a paper published in the journal Applied Thermal Engineering , the team from.
Researchers at the University of Bath (UK) have developed a new carbon nanotube (CNT)-based iron catalyst for the simplified conversion of CO and CO 2 to longer chain hydrocarbons. The well-known Fischer-Tropsch process for the conversion of carbon monoxide and carbon dioxide has been explored by researchers around the world.
A Rutgers-led team has developed a new biomass pretreatment process that could make it much cheaper to produce biofuels such as ethanol from plant waste and reduce reliance on fossil fuels. Similar processes could greatly reduce the cost of producing biofuels from waste biomass like corn stalks and leaves.
Cool Planet has devised a biomass-to-liquids thermochemical conversion process that simultaneously produces liquid fuels and sequesterable biochar useful as a soil amendment. One of the catalytic conversion processes creates the high-octane gasoline blendstock. Earlier post.). Earlier post.). Bio-hydrocarbons Biogasoline Biomass'
Sekisui , a multibillion dollar Japanese diversified chemicals company and LanzaTech report making significant progress on a waste-to-chemicals platform converting municipal solid waste (MSW) to ethanol or other new products. Garbage is an important resource. 20,000 liter per year MSW pilot facility.
Tenneco and Gentherm (formerly BSST/Amerigon) are part of a US Department of Energy (DOE) consortium actively developing a thermoelectric generator (TEG) for capturing waste exhaust heat in vehicles and converting it to electrical energy to be used to power electrical systems within the vehicle. Source: Crane (2013).Click Click to enlarge.
VSPC’s active program to reduce costs even further includes its evaluation of industrial waste materials as feed, as well as the production of cathode-material precursors derived from spent LIBs. By uniting resources and innovation, the Company seeks to vertically integrate lithium extraction, processing and recycling.
From an environmental perspective, they note in their paper published in the Proceedings of the National Academy of Sciences , lead-free SnTe would be preferable for solid-state waste heat recovery if its thermoelectric figure-of-merit could be brought close to that of the lead-containing chalcogenides.
Mechanical engineers at the University of California, Riverside, have successfully used inexpensive materials to produce thermoelectric devices that transform low-level waste heat into electricity. The spin to charge conversion takes place in the NM (usually heavy metal) due to inverse spin-Hall effect. —Sandeep Kumar.
A Korean research team has developed a technology that can be used to mass-produce aviation-grade fuels from wood wastes. Large volumes of lignin are generated as waste in the pulping processes that are used to produce paper. The results of the study were published in the latest issue of Energy Conversion and Management.
has been awarded part of The Queensland Waste to Biofutures (W2B) Fund to support the development of waste to biofutures projects in Queensland, Australia. Queensland is rich in renewable biomass resources and has expressed the desire to invest in the future of biofuels.
Israel-based NewCO2Fuels (NCF), a subsidiary of GreenEarth Energy Limited in Australia, reported completion of stage 1 testing of its proof-of-concept system for the conversion of CO 2 into fuels using solar energy. Carbon Capture and Conversion (CCC) Fuels Solar Solar fuels' Concept of the NCF process. Click to enlarge.
Biofuels company NextFuels introduced its hydrothermal process for economically producing transportation and industrial fuels from wet, unprocessed agricultural waste. to 6 metric tons of agricultural waste is generated for each metric ton of oil. There is no such thing as waste. Resources. Click to enlarge.
Researchers at Henan Polytechnic University in China have hydrotreated the oil derived from hydrothermal liquefaction of scrap tires (STO) with waste engine oil (WEO) using five different activated carbon-supported noble metal catalysts—Pd/C, Pt/C, Ru/C, Ir/C, and Rh/C—for the production of liquid fuels. —Lou et al.
In the CHJ process (also called hydrothermal liquefaction), clean free fatty acid (FFA) oil from the processing of waste oils or energy oils is combined with preheated feed water and then passed to the CH reactor. The specification was approved and published with support from the Commercial Aviation Alternative Fuels Initiative (CAAFI).
Lignocellulosic biomass, which is the only sufficiently prevalent sustainable resource for conversion into liquid transportation fuels, is the most abundant organic material on Earth. The lignin is generally considered a waste product and burnt to produce energy, although that thought is changing. 16, 3819-3829.
The latest version of the MYPP presents a merged conversion R&D section; the renaming of the demonstration and market transformation area; and emerging work in wet waste-to-energy feedstocks. BETO is interested in the potential of four kinds of wet-waste feedstocks: The non-recyclable organic fraction of landfill solid wastes.
Sinopec Capital, as the industrial investment arm of Sinopec Group—one of the world’s largest integrated energy and chemicals companies—announced an investment in LanzaTech with a focus on promoting direct production of chemicals from waste carbon. LanzaTech represents the world-leading carbon recycling company.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content