This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Idemitsu Kosan, one of Japan’s leading producers and suppliers of energy, has launched a feasibility study of clean hydrogen production in Japan generated from waste, including municipal waste. The goal is to launch a first hydrogen production facility around 2030 capable of processing 200-300 tons of waste per day.
At the hubs, which can be built at or near landfills, Raven SR will convert mixed and multiple organic wastes, including municipal solid waste, greenwaste, food waste, medical, paper, etc. Careful temperature control prevents glass and metals from melting and becoming slag, and produces a biocarbon which is a salable product.
reports that it has achieved full conversion ( 99% + ) of king grass cellulosic material to water soluble sugars on a repeatable basis. This conversion occurs with a reaction time of less than one minute. Full conversion is the most efficient use of the feedstock possible and exceeds earlier projections. Blue Biofuels, Inc.
Meanwhile, wet waste feedstocks, such as animal manure and fats, oils, and greases (FOG), represent another important category of resources that could be utilized to produce MCCI bioblendstocks due to its abundant availability. An open-access paper on their results is published in the journal ACS Sustainable Chemistry & Engineering.
With this zero-waste car, the team wants to show that waste can be a valuable material with a multitude of applications. Luca, the world’s first Zero-Waste car. During the UBQ conversion process, the unsorted residual waste stream is reduced into its more basic natural components. Photo by Bart van Overbeeke.
Energy company SGH2 is bringing the world’s biggest green hydrogen production facility to Lancaster, California. SGH2’s gasification process uses a plasma-enhanced thermal catalytic conversion process optimized with oxygen-enriched gas. The facility will process 42,000 tons of recycled waste annually. —Lancaster Mayor R.
A team from the University of Calgary and Rice University has used flash joule heating (FJH) ( earlier post ) to convert low-value asphaltenes—a by-product of crude oil refining—into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG). Flash graphene from asphaltenes. (A)
Gang Liu from the Institute of Metal Research, CAS, has now initiated the establishment of international efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production. Efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production. Credit: DICP.
The technologies work as a system that converts organic waste into renewable hydrogen gas for use as a biofuel. The system combines biology and electrochemistry to degrade organic waste—such as plant biomass or food waste—to produce hydrogen.
The funding will help Sierra Energy further develop and commercialize its FastOx gasification technology, which converts virtually any waste into clean, renewable energy and fuels without burning. Waste is fed into the top of the gasifier vessel through an airlock. Purified oxygen and steam are injected into the base.
Researchers have shown that magnesium industrial wastes of AZ91 alloy and Mg-10 wt.% Gd alloy can be used for the production of hydrogen storage materials. The conversion process is possible and easily achievable, they noted. A paper on their work is published in the Journal of Power Sources. respectively. For the Mg-10 wt.%
Quantification of critical properties, including pour point, kinematic viscosity, and viscosity index, indicates that the products are promising alternatives to currently used base or synthetic oils. The reaction network involves the sequential conversion of polymer into the oil with a gradual decrease of molecular weight until ?700–800
Rice University scientists and their colleagues at C-Crete Technologies have optimized a process to convert waste from rubber tires into graphene that can, in turn, be used to strengthen concrete. After useful oils are extracted from waste tires, this carbon residue has until now had near-zero value, Tour said. —James Tour.
The USDA ARS and BIOF are cooperating to develop production methods which can be used to increase the productivity of land in Florida formerly used for orange production prior to the devastation of the industry by citrus greening. Citrus greening is one of the world’s most serious citrus plant diseases.
ReactWell , LLC, has licensed a novel waste-to-fuel technology from the Department of Energy’s Oak Ridge National Laboratory to improve energy conversion methods for cleaner, more efficient oil and gas, chemical and bioenergy production. It can be used by refineries to upgrade their feedstock or to convert biomass to oil.
Topsoe and Steeper Energy , a developer of biomass conversion technologies, signed a global licensing agreement for a complete waste-to-fuel solution. The end-products include Sustainable Aviation Fuel (SAF), marine biofuel, and renewable diesel from waste biomass.
This will make it possible to realize a simple and compact system for capturing and converting wasted carbon dioxide from incinerators and electric generation plants, according to Panasonic. Because of this, the amount of reaction products is exactly proportional to the light power. Hiroshi Hashiba et al. 243904 doi: 10.1063/1.4729298.
Carbon dioxide capture company AirCapture and carbon dioxide conversion company OCOchem, along with other partners, have won a $2.93-million AirCapture develops on-site, modular technology that captures CO 2 from the air using waste heat from manufacturing plants, enabling customer operations to go carbon neutral and even negative.
A Korean research team has developed a technology that can be used to mass-produce aviation-grade fuels from wood wastes. Large volumes of lignin are generated as waste in the pulping processes that are used to produce paper. Despite the digital revolution, a sharp increase in global parcel volumes supports the global paper production.
Methanol fuel cell developer and manufacturer Blue World Technologies ( earlier post ) is starting limited production—the first step in commercializing its methanol fuel cell technology. Methanol fuel cell production. Now the company is starting a limited methanol fuel cell production.
GTI has released a site-specific engineering design titled “ Low-Carbon Renewable Natural Gas (RNG) from Wood Wastes ”. GTI led a team of engineers and scientists to produce a blueprint for converting an existing biomass facility into an RNG production site, using the wood waste feedstock and some of the existing infrastructure.
0002823 ) to support the extraction and conversion of lithium from geothermal brines to use in batteries for stationary storage and electric vehicles. Projects for topic one can: Promote process intensification, such as through the elimination of intermediate lithium carbonate conversion.
an affiliate of Saudi Basic Industries Corporation (SABIC), and Technip Energies recently signed a Joint Development and Cooperation Agreement to collaborate on the development and realization of a commercial plant which will produce olefins and aromatics from plastic waste. Synova, SABIC Global Technologies B.V., Synova’s process.
Fulcrum BioEnergy has selected Gary, Indiana as the location of its Centerpoint BioFuels Plant, which will convert municipal solid waste (MSW) into low-carbon, renewable transportation fuel. a highly efficient and economic gasification system for the conversion of the MSW feedstock to syngas.
The first Ford F-150 Lightning electric pickup truck pre-production units have begun leaving the Rouge Electric Vehicle Center; the all-electric F-150 Lightning goes on sale next spring. The investment and 450 added jobs will help increase production capacity to 80,000 trucks a year. Ford has invested $7.7
The EU-funded research project HyFlexFuel recently successfully produced biocrudes via hydrothermal liquefaction (HTL) from a variety of biomasses, including sewage sludge, food waste, manure, wheat straw, corn stover, pine sawdust, miscanthus and microalgae in a pilot-scale continuous HTL plant at Aarhus University (Denmark).
A team of scientists from LanzaTech, Northwestern University and the Department of Energy’s Oak Ridge National Laboratory have engineered a microbe to convert molecules of industrial waste gases, such as carbon dioxide and carbon monoxide, into acetone and isopropanol (IPA). —Jennifer Holmgren, CEO of LanzaTech. In this case of C.
Many biofuels, including ethanol, biodiesel and other products derived from organic material (biomass), are almost exclusively produced via fermentation. These fermentation processes create carbon as a byproduct, with some processes wasting more than 1/3 of this carbon as CO 2 emissions. The awardees are: LanzaTech, Inc.
DE-FOA-0002423 ) Topic Areas ins the FOA support DOE’s Bioenergy Technologies Office’s (BETO’s) objectives to reduce the minimum selling price of drop-in biofuels, lower the cost of biopower, and enable high-value products from biomass or waste resources. Algae Productivity Exceeding Expectations (APEX) (up to $20M).
In Italy, Eni and Hera signed a partnership agreement with the aim of converting used vegetable oil into renewable diesel for Hera’s waste collection vehicles. The agreement revolves around household waste vegetable oil, such as that used for frying, collected by Hera in around 400 roadside containers and about 120 collection centres.
through its subsidiary dedicated to the deployment of technologies for the energy transition, NextChem , signed today a memorandum of understanding (MoU) to support the production of green hydrogen via electrolysis in the United States. (EGPNA), and Maire Tecnimont S.p.A.,
The recycling of plastic waste plays a large conceptual role in the quesst for the realization of a circular economy. The Alterra technology transforms plastic destined for landfills back into petrochemical products that can be further refined into fuels, waxes and plastic production. Shibashish D. Jaydev, Antonio J.
The Abfallentsorgungs-Gesellschaft Ruhrgebiet mbH ( AGR ), a waste management company in Herten, North Rhine-Westphalia, Germany, has put a converted DAF CF 340 hydrogen fuel cell truck into operation as part of the EU-funded HECTOR (Hydrogen Waste Collection Vehicles in North West Europe) project.
The assistant professor and William Marsh Rice Trustee Chair of Chemical and Biomolecular Engineering has proposed the development of a modular electrochemical system that will provide “a sustainable, negative-carbon, low-waste and point-source manufacturing path preferable to traditional large-scale chemical process plants.”.
Biomass feedstocks can be produced by municipal solid waste (MSW) streams and algae and converted into low-carbon fuels that can significantly contribute to the decarbonization of transportation sectors that face barriers to electrification, such as aviation and marine. Improve algae farming practices to increase production ($18.7
Biogas facilities produce renewable gas mainly by fermenting biological waste. In countries with a large forestry sector, such as Finland or Sweden, there is a high potential for the production of SNG from waste wood.
Cool Planet has devised a biomass-to-liquids thermochemical conversion process that simultaneously produces liquid fuels and sequesterable biochar useful as a soil amendment. One of the catalytic conversion processes creates the high-octane gasoline blendstock. Earlier post.). Depending on the temperature (300 ?C
million grant to researchers at Texas A&M AgriLife Research to investigate potential discoveries for wasteproducts used in lignocellulosic biofuel production, turning them into valuable agents used in producing commercial products such as biodiesel and asphalt binding agents.
Production of renewable diesel bioblendstocks through reductive etherification of alcohols and ketones. The first-of-its-kind continuous catalytic process was designed to reduce production costs relative to batch chemistry, the prior state-of-the-art technology. Hafenstine et al. —Derek Vardon, an NREL researcher and co-author.
Sinopec Capital, as the industrial investment arm of Sinopec Group—one of the world’s largest integrated energy and chemicals companies—announced an investment in LanzaTech with a focus on promoting direct production of chemicals from waste carbon.
The US Department of Energy (DOE) launched the Clean Fuels & Products Shot , a new initiative that aims to reduce greenhouse gas emissions (GHGs) from carbon-based fuels and products significantly. Biomass and wasteconversion technologies designed to use green electricity and hydrogen to maximize carbon retention in products.
A Rutgers-led team has developed a new biomass pretreatment process that could make it much cheaper to produce biofuels such as ethanol from plant waste and reduce reliance on fossil fuels. Similar processes could greatly reduce the cost of producing biofuels from waste biomass like corn stalks and leaves.
Lithium Australia subsidiary VSPC reports significant progress towards improving the energy density of LFP (lithium ferro phosphate) Li-ion battery cells by adjusting its proprietary manufacturing processes to incorporate manganese into the cathode active material during production.
If it can be successfully implemented at an industrial scale, the entire production process – from syngas production to pure methanol – will no longer release any carbon dioxide emissions. The basic chemical methanol is an important starting material for many products in different BASF value chains.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content