Remove Conversion Remove Polymer Remove Water
article thumbnail

Israeli team develops decoupled PEC water-splitting system for centralized production of H2

Green Car Congress

Researchers in Israel have designed a separate-cell photoelectrochemical (PEC) water-splitting system with decoupled hydrogen and oxygen cells for centralized hydrogen production. A paper describing their system is publishedin the journal Joule. The hydrogen cell contains the cathode, and it is physically separated from the oxygen cell.

Water 355
article thumbnail

U Oregon team advances effectiveness of catalytic water dissociation in bipolar membranes

Green Car Congress

Researchers at the University of Oregon have advanced the effectiveness of the catalytic water dissociation reaction in bipolar membranes. The technology behind bipolar membranes, which are layered ion-exchange polymers sandwiching a water dissociation catalyst layer, emerged in the 1950s. —Oener et al.

Oregon 284
article thumbnail

New polymer membrane efficiently removes carbon dioxide from mixed gases; high permeability and selectivity

Green Car Congress

A team of researchers from North Carolina State University, SINTEF in Norway and the Norwegian University of Science and Technology, has developed a polymer membrane technology that removes carbon dioxide from mixed gases with both high permeability and high selectivity. A paper on their work is published in the journal Science.

Polymer 186
article thumbnail

Researchers split water by altering photosynthetic machinery in plants; semi-artificial photosynthesis

Green Car Congress

They used natural sunlight to convert water into hydrogen and oxygen using a mixture of biological components and manmade technologies. A new paper, published in Nature Energy , outlines how the researchers at the Reisner Laboratory in Cambridge developed their platform to achieve unassisted solar-driven water-splitting. Katarzyna P.

Water 210
article thumbnail

Berkeley Lab researchers develop fully integrated microfluidic test-bed for solar-driven electrochemical energy conversion systems

Green Car Congress

Berkeley Lab researchers, working at the Joint Center for Artificial Photosynthesis (JCAP), have developed the first fully integrated microfluidic test-bed for evaluating and optimizing solar-driven electrochemical energy conversion systems. Segalman (2013) Integrated microfluidic test-bed for energy conversion devices.

article thumbnail

PEM Fuel Cells, Energy Conversion, and Mathematics

Green Car Congress

Water (liquid or vapor) is formed at the cathode catalyst. Liquid water hydrates the membrane and increases its protonic conductivity, but may also flood the catalyst layer pores, preventing oxygen from reaching the catalyst layers. Cross-section of a unit cell. Promislow and Wetton, 2009. Click to enlarge.

article thumbnail

Researchers synthesize battery cathode from lignin derivatives

Green Car Congress

Grzegorz Milczarek from Poznan University of Technology (Poland), and Olle Inganäs from Linköping University (Sweden), have combined lignin derivatives, which are electronic insulators, with polypyrole, a conductive polymer, into an interpenetrating composite suitable for use as a battery cathode. —Milczarek and Inganäs. 1215159.

Polymer 268