This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
New processing methods developed by MIT researchers could help ease looming shortages of the essential metals that power everything from phones to automotive batteries by making it easier to separate these rare metals from mining ores and recycled materials. —Antoine Allanore. Cite this article Stinn, C., Allanore, A.
Researchers at MIT and Stanford University have developed new battery technology for the conversion of low-temperature waste heat into electricity in cases where temperature differences are less than 100 degrees Celsius. These features lead to a high heat-to-electricity energy conversion efficiency of 5.7%
Researchers at MIT and in China are proposing a new class of dense intercalation-conversion hybrid cathodes by combining intercalation-type Mo 6 S 8 with conversion-type sulfur (HMSC) to realize a Li–S full cell.
Researchers at MIT have devised a simple, soluble metal oxide system to capture and transform CO 2 into useful organic compounds. reacts with triethylsilane in acetonitrile under an atmosphere of CO 2 to produce formate (69% isolated yield) together with silylated molybdate (quantitative conversion to [MoO 3 (OSiEt 3 )] ? ,
Researchers at MIT led by Drs. Using the nanocomposites as photoanodes in dye-sensitized solar cells, they achieved a power conversion efficiency in the solar cells of 10.6%, up from 8%—an increase of almost one-third. In their tests, adding the virus-built structures enhanced the power conversion efficiency to 10.6%.
Researchers at MIT have devised an environmentally-responsible process to recycle materials from discarded automotive lead-acid batteries to fabricate efficient organolead halide perovskite solar cells (PSCs)—a promising new large-scale and cost-competitive photovoltaic technology. C&EN quoted University of Oxford physicist Henry J.
In May, researchers at MIT and Stanford University reported the development of new battery technology for the conversion of low-temperature waste heat into electricity in cases where temperature differences are less than 100 ?Celsius. Earlier post.). are achieved with assumed heat recuperation of 50% and 70%, respectively.
A team of researchers at MIT has described a framework for efficiently coupling the power output of a series-connected string of single-band-gap solar cells to an electrochemical process that produces storable fuels. Watson Research Center) and former MIT graduate student Casandra Cox (now at Harvard). Source: Winkler et al.
As a result, there is a critical need to create new pathways for biofuel conversion that reduces carbon waste, prevents the loss of CO 2 emissions, and in turn, maximizes the amount of renewable fuel a conversion process yields. University of Wisconsin-Madison. The awardees are: LanzaTech, Inc.
A collaboration including researchers from Boston College, MIT, the University of Virginia and Clemson University have achieved a peak ZT (thermoelectric figure of merit) of 0.8 And a team from Northwestern University and the University of Michigan reported experimentally achieving a ZT of 1.7
New research by MIT scientists suggests that carbon nanotubes could be used to create elastic energy storage systems with energy densities that could be three orders of magnitude higher than those of conventional steel springs, and comparable to Li-ion batteries with potentially more durability and reliability. Hill et al. Click to enlarge.
A team of MIT researchers, led by Dr. Angela Belcher, has engineered a common bacteriophage virus (M13) to function as a scaffold to mediate the co-assembly of zinc porphyrins (photosensitizer) and iridium oxide hydrosol clusters (catalyst) for visible light-driven water oxidation. TEM images of the virus-templated IrO 2 nanowires.
MIT researchers have found a new family of highly active catalyst materials that provides the best performance yet in the oxygen evolution reaction (OER) in electrochemical water-splitting—a key requirement for energy storage and delivery systems such as advanced fuel cells and lithium-air batteries. Source: MIT. Grimaud et al.
hydrocarbons (propane and propylene) from renewable biomass via the hydrothermal conversion of well-known fermentation end-products (butyric acid and 3-hydroxybutyrate) without the use of exogenous hydrogen. Tester were originally at MIT; they are now at Ginkgo Bioworks, Stanford University, and Cornell University, respectively.
The following projects were selected under Topic 1a: Novel Bio-Based Plastics: Designing Highly Recyclable or Biodegradable Bio-Based Plastics: Iowa State University (Ames, IA) - Trojan Horse Repeat Sequences for Triggered Chemical Recycling of Polyesters for Films and Bottles – DOE funding: $2,165,000.
Researchers at MIT and the Ford Motor Company have found that depending on the location, lightweight conventional vehicles could have a lower lifecycle greenhouse gas impact than electric vehicles, at least in the near term. Their paper is published in the ACS journal Environmental Science & Technology.
The new MIT proces converts furfural into GVL via a series of cascading (domino-like) reactions catalyzed by zeolites with Lewis and Brønsted acid sites. The new MIT production method, described in the June 11 issue of the journal Angewandte Chemie , eliminates both of those obstacles. Credit: Bui et al. Click to enlarge.
MIT researchers have developed a new system that could potentially be used for converting power plant emissions of carbon dioxide into carbon monoxide, and thence into useful fuels for cars, trucks, and planes, as well as into chemical feedstocks for a wide variety of products. and Ghoniem, A. FeO 3-δ membranes: a kinetics study.
The University of Wisconsin-Madison and ExxonMobil announced a two-year renewal of an agreement to research the fundamental chemistry of converting biomass into transportation fuels. UW-Madison has long been known for its expertise in biomass conversion. UW-Madison has long been known for its expertise in biomass conversion.
Within the program, BP scientists and engineers and MIT researchers collaborate across a range of fields including energy conversion, energy sustainability, materials science, and the modeling of global energy production and use. —Ellen Williams, BP’s Chief Scientist.
While chemically converting natural gas to liquid fuels (GTL) is a proven technology that increases volumetric energy density, the current conversion approach through Fischer-Tropsch (FT-GTL) is challenged by both high capital costs and low conversion efficiencies. process intensification approaches for biological methane conversion.
The projects are based in 24 states, with approximately 47% of the projects led by universities; 29% by small businesses; 15% by large businesses; 7.5% Natural Gas Reactor for Remote Chemical Conversion. University. Researchers from Colorado State University will develop a system. University. by non-profits.
Researchers at the University of Houston’s physics department and the Texas Center for Superconductivity, MIT and Boston College have found that indium-doped tin telluride (SnTe) shows high thermoelectric performance, with a peak figure of merit (ZT) of ?1.1 atom % In-doped SnTe at about 873 K (600 ° C).
The projects selected are located in 25 states, with 50% of projects led by universities, 23% by small businesses, 12% by large businesses, 13% by national labs, and 2% by non-profits. University of Massachusetts, Amherst. Development of a Dedicated, High-Value Biofuels Crop The University of Massachusetts, Amherst will develop an.
A paper by a team from the University of Chicago and MIT suggests that technology-driven cost reductions in fossil fuels will lead to the continued use of fossil fuels—oil, gas, and coal—unless governments pass new taxes on carbon emissions. Their analysis is published in the Journal of Economic Perspectives.
The University of Wisconsin-Madison and ExxonMobil announced a two-year agreement to research the fundamental chemistry of converting biomass into transportation fuels. The science of biomass conversion is very complicated. Researchers have used expensive precious metal catalysts such as platinum for biomass conversion.
The conversation about regulating the environmental impact of the space launch industry needs to start now so we can minimise harm to the stratospheric ozone layer and climate. Such rapid growth demands detailed understanding of the potential impact on the protective stratospheric ozone (O 3 ) layer and climate. —Ryan et al.
GMZ Energy, a provider of advanced nano-structured thermoelectric generation technology, was co-founded by MITs Professor Gang Chen and collaborator Zhifeng Ren of the University of Houston. Thermoelectric materials convert temperature differences into electric voltage; a TEG in a vehicle is designed to convert waste heat to power.
Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Biodiesel. Johnson Matthey will investigate the catalytic conversion of this microbial biodiesel into additional fuel molecules, most importantly jet fuel. NC State University. Medical University of South Carolina. OPX Biotechnologies Inc.
The selected projects—spanning 22 states and coordinated at universities, national laboratories, and private companies—will advance technologies for a wide range of areas, including electric vehicles, offshore wind, storage and nuclear recycling. Cornell University. Stanford University. The Ohio State University.
Ford is now shipping beta test kits of its open-source connectivity research platform, OpenXC ( earlier post ), to developers and universities around the world. It listens for a subset of CAN messages, performs required unit conversion or factoring and outputs a generic version to the USB interface. OpenXC architecture.
A separate paper published online in Science Express by researchers from the Marine Biological Laboratory, Woods Hole and MIT concludes that indirect land use change associated with global biofuels programs will be responsible for substantially more carbon loss (up to twice as much) than direct land use. issue of the journal Science.
DARPA SubT ] A new control system, designed by researchers in MIT's Improbable AI Lab and demonstrated using MIT's robotic mini cheetah, enables four-legged robots to traverse across uneven terrain in real-time. [ Dynamic sensing unlocks flexible and reliable data capture for improved site awareness, safety, and efficiency.
Researchers at MIT, with colleagues at the University of Minnesota, have provided evidence and theoretical rate coefficients for new pathways in the low-temperature oxidation of hydrocarbons. The new pathways lead to the conversion of KHPs [?-ketohydroperoxides] Credit: ACS, Jalan et al. Click to enlarge. —Jalan et al.
Exascale Lattice Gauge Theory Opportunities and Requirements for Nuclear and High Energy Physics, Paul Mackenzie (FNAL) with BNL, TJNAF, Boston University, Columbia University, University of Utah, Indiana University, UIUC, Stony Brook, College of William & Mary.
Conversion kits also will be available to switch medium-duty gasoline vehicles to run on propane. Researchers at MIT had earlier demonstrated the ability to make biopropane (LPG from corn or sugarcane) using a supercritical water process, and created a startup (C3 BioEnergy) in 2007 that attempted to commercialize the technology. (JGS)
This is an example of bridging the conversational nature of Chat GPT and other LLMs to generate real-world physical action. Wing ] MIT Mechanical Engineering students in Professor Sangbae Kim’s class explore why certain physical traits have evolved in animals in the natural world. Moderated by Catie Cuan, Stanford University.
The team will apply atomic layer deposition technology to fabricate and modify the catalyst at the atomic level, with the goal of more than doubling catalyst lifetime, improving selectivity and conversion efficiency at reduced costs. Board of Trustees of the University of Illinois. Colorado State University.
Durable and affordable higher-temperature heat exchangers could make energy conversion much more efficient, which in turn could reduce fuel consumption, system footprint, capital and operational cost, and emissions. HITEMMP projects include: Michigan State University. Missouri University of Science and Technology.
Bundesministerin Anja Karliczek hat heute in Berlin den Prototypen eines Autos vorgestellt, das mit dem synthetischen Kraftstoff Methanol angetrieben werden kann. The Obrist DE GmbH worked with the Technical University of Munich, the Technical University of Dresden, and the RWTH Aachen to create the vehicle.
In association with universities, institutes and development companies, we are developing research platforms whose basic technical principles are based on nature. To begin with, we have updated Misty's conversational skills, focusing on both improved NLU capabilities and added more languages. So what is new, we hear you ask?
In 1965, Larry Roberts, then at the MIT Lincoln Laboratory , connected one computer in Massachusetts to another in California over a telephone line. He was off to Princeton University in the autumn of 1961, returning to Bell Labs for the next few summers. You were just trying to figure out how to enable conversations.”
The research program involves eight core projects: Light Capture and Conversion. Additional partners include SLAC National Accelerator Laboratory; the University of California, Irvine; and the University of California, San Diego. Molecular and Nanoscale Interfaces. Scale-Up and Prototyping.
A team at Columbia University, in New York City, has developed a wireless-communication technique for wearable medical devices that sends signals securely through body tissue. A thermophotovoltaic (TPV) cell developed by engineers at MIT has eclipsed the 40-percent-efficiency mark. But the tide looks to be turning.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content