Remove Conversion Remove Low Cost Remove Water
article thumbnail

Stanford researchers make ammonia from air and water microdroplets

Green Car Congress

Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. The conversion rate reaches 32.9 ± 1.38 Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4.

Water 459
article thumbnail

KIT team designs low-cost photoreactor for efficient solar-driven synthesis

Green Car Congress

Researchers from the Karlsruhe Institute of Technology (KIT) and their Canadian partners have designed a low-cost photoreactor design for solar-driven synthesis. The photoreactors have a low level of complexity, are readily manufacturable via mass fabrication techniques in polymers, and are easy to adapt to diverse photocatalysts.

Low Cost 221
article thumbnail

Exeter team develops low-cost photoelectrode for spontaneous water-splitting using sunlight

Green Car Congress

The nanostructured photoelectrode results in spontaneous hydrogen evolution from water without any external bias applied with a faradaic efficiency of 30% and excellent stability. One way this could be achieved is by using photoelectrochemical (PEC) water splitting which directly converts water and sunlight to solar fuel (hydrogen).

Water 342
article thumbnail

PNNL team develops new low-cost method to convert captured CO2 to methane

Green Car Congress

By using a water-lean post-combustion capture solvent, (N-(2-ethoxyethyl)-3-morpholinopropan-1-amine) (2-EEMPA), they achieved a greater than 90% conversion of captured CO 2 to hydrocarbons—mostly methane—in the presence of a heterogenous Ru catalyst under relatively mild reaction conditions (170 °C and 2 pressure).

Convert 315
article thumbnail

UNC team synthesizes silicon nanowires that split water

Green Car Congress

Researchers from the University of North Carolina have synthesized high-photovoltage multijunction Si nanowires (SiNWs) that are co-functionalized to split water catalytically. When integrated with the co-catalysts and suspended in water, these light-activated nanoreactors produced hydrogen gas under visible and infrared light.

Water 221
article thumbnail

EPFL team develops low-cost water splitting cell with solar-to-hydrogen efficiency of 12.3%

Green Car Congress

Michael Grätzel at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland has developed a highly efficient and low-cost water-splitting cell combining an advanced perovskite tandem solar cell and a bi-functional Earth-abundant catalyst. Splitting water requires an applied voltage of at least 1.23 V and up to 1.5

Low Cost 278
article thumbnail

PNNL team develops least costly to date carbon capture system with conversion to methanol

Green Car Congress

The new PNNL carbon capture and conversion system brings the cost to capture CO 2 down to about $39 per metric ton. This is the first known demonstration of integrated low-temperature thermocatalytic capture and conversion of CO 2 to methanol in an economically viable CO 2 capture solvent. —Kothandaraman et al.