This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Chemists from the University of Waterloo have successfully resolved two of the most challenging issues surrounding lithium-oxygen batteries, and in the process created a working battery with near 100% coulombic efficiency. Thermodynamics and configuration of the Li-O 2 cell. (A) —Xia et al. By operating the battery at 150 ?C Resources.
Generalized form of the molten air battery. Researchers at George Washington University led by Dr. Stuart Licht have introduced the principles of a new class rechargeable molten air batteries that offer amongst the highest intrinsic electric energy storage capabilities. Licht et al. Click to enlarge. Earlier post.]
Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Biodiesel. Johnson Matthey will investigate the catalytic conversion of this microbial biodiesel into additional fuel molecules, most importantly jet fuel. Hydrogen-Dependent Conversion of Carbon Dioxide To Liquid Electrofuels By Extremely Thermophilic Archaea.
MIT researchers have found a new family of highly active catalyst materials that provides the best performance yet in the oxygen evolution reaction (OER) in electrochemical water-splitting—a key requirement for energy storage and delivery systems such as advanced fuel cells and lithium-air batteries. —Grimaud et al. “We
Another attractive aspect of this technology is that lithium metal can be produced from salt solutions (e.g., In other words, energy from the sun can be “stored” in the metal, and then be used on demand by reacting the lithium in the fuel cell. Recharging the battery would be a matter of replacing the lithium metal cell.
However, even these costs are unlikely to create a mass market for BEVs, because a battery large enough for a 300-mile real-world range would still present significant weight and volume penalties and probably could not be recharged in much less than 30 minutes. BEVs and PHEVs are likely to use lithium-ion batteries for the foreseeable future.
The top two awards, one of $9 million to a project led by Dow Chemical, and one of $8.999 million to a project led by PolyPlus, will fund projects tackling, respectively, the manufacturing of low-cost carbon fibers and the manufacturing of electrodes for ultra-high-energy-density lithium-sulfur, lithium-seawater and lithium-air batteries.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content