This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Norwegian state-owned energy company Equinor and Germany-based energy company RWE have agreed to work together to develop large-scale value chains for low carbon hydrogen. Building production facilities in Norway to produce low carbon hydrogen from natural gas with CCS. Export of hydrogen by pipeline from Norway to Germany.
The implementation of this project, the first industrial-scale power-to-X-to-power demonstrator with an advanced hydrogen turbine, will be launched at Smurfit Kappa PRF’s site—a company specialized in manufacturing recycled paper—in Saillat-sur-Vienne, France. In this case, the “X” will be hydrogen.
GTI, a research, development and training organization focused on natural gas and energy markets, is launching a hydrogen technology center. GTI focuses its R&D efforts on the generation of clean hydrogen using hydrocarbon fuels that incorporate carbon capture and/or carbon sequestration in a cost-effective manner.
SSAB, LKAB and Vattenfall have now produced hydrogen-reduced sponge iron on a pilot scale. The test production was carried out in HYBRIT’s pilot plant in Luleå and shows that it is possible to reduce iron ore with fossil-free hydrogen, instead of removing the oxygen with coal and coke. So far, about 100 tons have been produced.
Mitsubishi Power Americas and Texas Brine Company are collaborating to develop large-scale long-duration hydrogen storage solutions to support decarbonization efforts across the eastern United States. Long-duration hydrogen storage is a key enabling technology for the transition to a net zero carbon energy future.
All of these concepts rely on hydrogen as a primary power source—an option which Airbus believes holds exceptional promise as a clean aviation fuel and is likely to be a solution for aerospace and many other industries to meet their climate-neutral targets. —Guillaume Faury, Airbus CEO. —Guillaume Faury.
Researchers at Germany’s Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden have developed an ultra-high-capacity hydrogen storage substance for PEM fuel cell applications based on solid magnesium hydride. Fraunhofer’s POWERPASTE releases hydrogen on contact with water. 1 kg hydrogen).
At this year’s Africa Aerospace & Defence (AAD) expo at AFB Waterkloof in Centurion, Rheinmetall AG is presenting turnkey, mobile modular solutions for producing, storing and transporting CO 2 -free hydrogen. The hydrogen produced by the system can either be kept in situ or transported to a different destination.
Researchers at Stanford University have shown that porous polymer encapsulation of metal-supported catalysts can drive the selectivity of CO 2 conversion to hydrocarbons. CO 2 (black and red) and hydrogen molecules (blue) react with the help of a ruthenium-based catalyst. Chengshuang Zhou, Arun S. Asundi, Emmett D. Hoffman, Sindhu S.
bp is developing plans for the UK’s largest blue hydrogen production facility, targeting 1GW of hydrogen production by 2030. bp’s hydrogen business and make a major contribution to the UK Government’s target of developing 5GW of hydrogen production by 2030. which is then captured and permanently stored.
A study by a team of researchers from Technische Universität Berlin (TUB) and Fritz-Haber-Institut der Max-Planck-Gesellschaft has found that direct seawater splitting for hydrogen production has substantial drawbacks compared to conventional water splitting and offers almost no advantage. Additionally, H 2 O is needed for water splitting.
Russian Rosatom State Atomic Energy Corporation and the EDF Group signed a strategic cooperation agreement in March 2021 to develop green hydrogen in Russia and Europe. Hydrogen energy is one of Rosatom’s R&D priorities.
Projects selected under this funding opportunity announcement (FOA) will perform conceptual design studies followed by field validations of cost-effective processes for ocean-based carbon capture and for direct air capture of CO 2 coupled with carbon-free hydrogen and captured CO 2 to create carbon-neutral methanol.
Carbon dioxide capture company AirCapture and carbon dioxide conversion company OCOchem, along with other partners, have won a $2.93-million The formic acid can then be stored, transported, and used directly in many industrial, consumer, transportation, and agricultural industries.
A new study by Berkeley Lab researchers at the Joint Center for Artificial Photosynthesis ( JCAP ) shows that nearly 90% of the electrons generated by a new hybrid photocathode material designed to store solar energy in hydrogen are being stored in the target hydrogen molecules (Faradaic efficiency). Earlier post.)
The electrocatalytic conversion of CO 2 using renewable energy could establish a climate-neutral, artificial carbon cycle. Excess energy produced by photovoltaics and wind energy could be stored through the electrocatalytic production of fuels from CO 2. These could then be burned as needed.
The Dutch Institute for Fundamental Energy Research ( DIFFER ) is partnering with Toyota Motor Europe (TME) to develop a device that absorbs water vapor, and splits it into hydrogen and oxygen directly using solar energy. In this project, DIFFER and TME are exploring an innovative way to produce hydrogen directly out of humid air.
Energy company SGH2 is bringing the world’s biggest green hydrogen production facility to Lancaster, California. SGH2’s gasification process uses a plasma-enhanced thermal catalytic conversion process optimized with oxygen-enriched gas.
Researchers at the University of California Santa Barbara have developed catalytic molten metals to pyrolize methane to release hydrogen and to form solid carbon. The insoluble carbon floats to the surface of the melt, where it can be removed and stored or incorporated into composite materials. Metallic catalysts (e.g.,
Chiyoda’s hydrogen supply chain concept. Japan-based Chiyoda Corporation announced that a demonstration plant located in its Koyasu Office and Research Park has successfully achieved expected performance using a liquid organic hydrogen carrier (LOHC) technology. Gravimetric and volumetric content of hydrogen storage systems.
Italy-based Snam, a leading energy infrastructure operator, and Saipem, an Italian multinational oilfield services company, have signed a Memorandum of Understanding to start working together to define and to develop initiatives for green hydrogen production and transport, and for carbon dioxide capture, transport and reuse or storage (CCS and CCU).
Their research shows that converting a Falcon 50 to Liquid Ammonia Turbofan Combustion is the most efficient and commercially viable avenue to building a hydrogen-powered plane. The company’s team of engineers say they now have a clear pathway to having Australia’s first hydrogen-fuelled aircraft in the skies by the middle of 2023.
Researchers in Israel have designed a separate-cell photoelectrochemical (PEC) water-splitting system with decoupled hydrogen and oxygen cells for centralized hydrogen production. It addresses the challenges of designing, building, and optimizing the device for assessing large-scale hydrogen generation. Landman et al.
DHL Supply Chain and London Stansted Airport recently signed agreements to participate in Hydrogen On Site Trials (HOST) of ITM Power’s transportable high pressure hydrogen refuelling unit (HFuel). Hydrogen Refuelling Station (HFuel) is a self-contained module suitable for refuelling hydrogen-powered road vehicles and forklift trucks.
1 ) and ammonia conversion (>99%) at a significantly reduced operating temperature (. This has resulted in a growing demand for a technology that can convert surplus renewable energy into hydrogen and transport the hydrogen to the target destination for utilization. mol-H 2 g cat ?1 Credit: KIST.
Researchers led by MIT professor Daniel Nocera have produced an “artificial leaf”—a solar water-splitting cell producing hydrogen and oxygen that operates in near-neutral pH conditions, both with and without connecting wires. The cell was illuminated over the 2 h of the experiment. Reece et al. Click to enlarge.
Reversible hydrogen storage cycle based on the redox system bicarbonate/formate. Researchers at the Leibnitz Institute for Catalysis (Rostock, Germany) have introduced a new approach to hydrogen storage that is based on simple salts of formic acid and carbonic acid. Source: Boddien et al. Click to enlarge. wt % (FA) and 2.35
Suncor Energy and Australia-based Hazer Group Limited will use Hazer’s innovative methane pyrolysis technology for the first time in North America to produce hydrogen from natural gas. If the pilot continues as a full commercial build out, the project would be expected to produce up to 2,500 tonnes of hydrogen per year.
The electrochemical conversion of ammonia to dinitrogen in a direct ammonia fuel cell (DAFC) is a necessary technology for the realization of a nitrogen economy. We discovered chemical compounds that catalyze the conversion of ammonia to nitrogen at room temperature, without any applied voltage or added chemicals.
BMW Manufacturing has launched the first phase of an integrated program of work with the intent to validate the economic and technical feasibility of converting landfill gas (LFG) into hydrogen. and the South Carolina Hydrogen and Fuel Cell Alliance. methane, CO 2.
EPFL scientists have devised a solution for the reversible conversion of hydrogen gas into formic acid (a liquid) for easier storage and transport. Gabor Laurenczy’s team has already developed a process for transforming formic acid into hydrogen gas. The simple system is based on two chemical reactions. Séverine Moret, Paul J.
Aldrich Materials Science , a strategic technology initiative of Sigma-Aldrich Corporation, has signed an agreement to collaborate on the scale-up and commercialization of next-generation boron hydride hydrogen-storage materials with Ilika plc , an advanced cleantech materials discovery company. Boron-based hydrogen storage.
By using a water-lean post-combustion capture solvent, (N-(2-ethoxyethyl)-3-morpholinopropan-1-amine) (2-EEMPA), they achieved a greater than 90% conversion of captured CO 2 to hydrocarbons—mostly methane—in the presence of a heterogenous Ru catalyst under relatively mild reaction conditions (170 °C and 2 pressure). Heldebrant, D.,
Biomass, a kind of renewable resource that adsorbs CO 2 during its growth, contributes net zero carbon emissions when used to produce hydrogen. Hydrogen can be produced by direct gasification of biomass into syngas. An alternative method is its primary conversion into bio-oil by fast pyrolysis.
While there is global potential to generate renewable energy at costs already competitive with fossil fuels, a means of storing and transporting this energy at a very large scale is a roadblock to large-scale investment, development and deployment. Generation 2 moves the Haber-Bosch process to renewable sources of hydrogen.
Anglo American Platinum (Amplats), alongside Shell Technology Ventures (STV), has taken a stake in High-Yield Energy Technologies ( HyET ) ( earlier post ), a Dutch company that has developed cost-effective electrochemical hydrogen compression (EHC) technology. The hydrogen flow is reversed when the direction of the current is reversed.
One of the projects to be awarded grant funding is the “P2G BioMet” project, led by Hydrogenics, along with consortium members CNG Services, Electrochaea and National Grid. The Power-to-Gas via Biological Methanation system uses surplus renewable electricity to split apart water (electrolysis), releasing hydrogen and oxygen.
Researchers at Lawrence Livermore National Laboratory (LLNL) have discovered and demonstrated a new technique to remove and store atmospheric carbon dioxide while generating carbon-negative hydrogen and producing alkalinity, which can be used to offset ocean acidification. —Greg Rau.
The nanostructured photoelectrode results in spontaneous hydrogen evolution from water without any external bias applied with a faradaic efficiency of 30% and excellent stability. A promising way of storing solar energy is via chemical fuels, in particular hydrogen as it is considered as a future energy carrier.
The process requires no catalysts or hydrogen, and is “ a spin on chemistry used to make acetone back in the 1800s ”, said M. The TDO process starts with the conversion of cellulose to organic acids. You can do it by using hydrogen, which is expensive and also decreases the energy efficiency of your process.
Israel-based NewCO2Fuels (NCF), a subsidiary of GreenEarth Energy Limited in Australia, reported completion of stage 1 testing of its proof-of-concept system for the conversion of CO 2 into fuels using solar energy. Simultaneously, the same device can dissociate water (H 2 O) to hydrogen (H 2 ) and oxygen (O 2 ). Click to enlarge.
The US Department of Energy (DOE) Fuel Cell Technologies Office’ (FCTO) 2014 Hydrogen and Fuel Cells Program Annual Progress Report ( earlier post )—an annual summary of results from projects funded by DOE’s Hydrogen and Fuel Cells Program— described a number of advances in the field of hydrogen storage.
This type of artificial photosynthesis can serve as an energy store and thus help to close the carbon cycle and reduce carbon dioxide pollution in the atmosphere. In the electrolyzers, carbon dioxide and water are converted into carbon monoxide (CO) and hydrogen (H 2 ) with electricity in a first step.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content