This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Universal Hydrogen ( earlier post ) has signed LOIs with Icelandair Group (Iceland), Air Nostrum (Spain), and Ravn Air (Alaska) for aftermarket conversion of aircraft to hydrogen propulsion and for the supply of green hydrogen fuel using Universal Hydrogen’s modular capsules. Icelandair. Icelandair.
SK Corp, the holding company of SK Group, has made a strategic investment in Monolith , a US company that has developed a plasma-based process to produce “cyan” hydrogen—between green (via electrolysis using renewable energy) and blue (conversion of methane accompanied by CO 2 capture and storage). The Monolith process.
million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogenproduction with nuclear energy. The 50 kW demonstration will prove that high-efficiency syngas production can be achieved at low capital-cost using GRC’s unique thermal-spray-based SOCC technology.
China-based Dongfang Electric Corporation (DEC) reported successful testing of non-desalinated seawater electrolysis technology for hydrogenproduction powered by offshore wind. The floating hydrogenproduction platform Dongfu One is sited in an offshore wind farm in East China’s Fujian province. —Xie et al.
Norwegian state-owned energy company Equinor and Germany-based energy company RWE have agreed to work together to develop large-scale value chains for low carbon hydrogen. Building production facilities in Norway to produce low carbon hydrogen from natural gas with CCS. Export of hydrogen by pipeline from Norway to Germany.
The US Department of Energy (DOE) released draft guidance for a Clean HydrogenProduction Standard (CHPS), developed to meet the requirements of the Bipartisan Infrastructure Law (BIL), Section 40315. A lifecycle system boundary enables consistent and comprehensive evaluation of diverse hydrogenproduction systems.
Although the thermocatalytic ammonia decomposition reaction (ADR) is an effective way to obtain clean hydrogen, it relies on the use of expensive and rare ruthenium (Ru)-based catalysts, making it not sustainable or economically feasible. A complete ammonia conversion to hydrogen was achieved at an economically feasible 450 ?C
Using a hematite photocatalyst, a team led by researchers from Kobe University has succeeded in producing both hydrogen gas and hydrogen peroxide at the same time from sunlight and water. Hydrogen has gained attention as one of the possible next generation energy sources. under 600nm). Mesocrystal technology. Tachikawa et al.
Idemitsu Kosan, one of Japan’s leading producers and suppliers of energy, has launched a feasibility study of clean hydrogenproduction in Japan generated from waste, including municipal waste. The goal is to launch a first hydrogenproduction facility around 2030 capable of processing 200-300 tons of waste per day.
SSAB, LKAB and Vattenfall have now produced hydrogen-reduced sponge iron on a pilot scale. The technological breakthrough within the HYBRIT ( earlier post ) initiative cuts about 90% of the emissions in connection with steel production and is a decisive step on the road to fossil-free steel. So far, about 100 tons have been produced.
Purem by Eberspaecher is introducing efficient exhaust technology for hydrogen engines. The H 2 -ICE exhaust system for hydrogen engines from Purem by Eberspaecher. Hydrogen engines have potential as a drive type with CO 2 -neutral fuel, especially for heavy-load transport and in off-highway vehicles.
With efficiencies above 90%, Topsoe’s proprietary SOEC electrolyzers offer superior performance in electrolysis of water into hydrogen—e.g., Solid oxide electrolysis cell (SOEC) technology is attractive because of unrivaled conversion efficiencies—a result of favorable thermodynamics and kinetics at higher operating temperatures.
Proton ceramic electrochemical reactors can extract pure hydrogen from gas mixtures by electrolytically pumping protons across the membrane at 800 °C. Counterflowing streams balanced heat flows and maintained stable operating conditions that enabled 99% efficiency of hydrogen recovery. It also has CO 2 as a by-product.
Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. The movement through water is sluggish, which slows the rate of conversion of the carbon dioxide.
Researchers at The Ohio State University have used a chemical looping process to produce hydrogen from hydrogen sulfide gas—commonly called “sewer gas”. Hydrogen sulfide is emitted from manure piles and sewer pipes and is a key byproduct of industrial activities including refining oil and gas, producing paper and mining.
An international collaboration of scientists has taken a significant step toward the realization of a nearly “green” zero-net-carbon technology that can efficiently convert CO 2 and hydrogen into ethanol. None of the three components examined in the study is able to individually catalyze the CO 2 -to-ethanol conversion, nor can they in pairs.
Rolls-Royce is further developing its mtu gas engine portfolio for power generation and cogeneration to run on hydrogen as a fuel and thus enable a climate-neutral energy supply. Already today, gensets powered by mtu Series 500 and Series 4000 gas engines can be operated with a gas blending of 10% hydrogen.
Researchers at Ariel University in Israel have developed a new type of hydrogen generator for “on-demand” use with fuel cells. Hydrogen is produced in a catalytic hydrolysis reaction of sodium borohydride (NaBH 4 ) with ruthenium powder as a catalyst. —Zakhvatkin et al. 1c00367.
Universal Hydrogen announced $20.5-million Founded in 2020 by aviation industry veterans Paul Eremenko, John-Paul Clarke, Jason Chua, and Jon Gordon, Universal Hydrogen is stitching together the end-to-end hydrogen value chain for aviation, both for hydrogen fuel and hydrogen-powered airplanes.
a global supplier of hydrogen fuel cell-powered commercial vehicles, announced a joint venture to build up to 100 hydrogen hubs across the United States and globally. into locally produced, renewable hydrogen for Hyzon’s fleet of zero-emission commercial vehicles. Raven SR , a renewable fuels company, and Hyzon Motors Inc.,
GTI, a research, development and training organization focused on natural gas and energy markets, is launching a hydrogen technology center. GTI focuses its R&D efforts on the generation of clean hydrogen using hydrocarbon fuels that incorporate carbon capture and/or carbon sequestration in a cost-effective manner.
Hydra Energy, the Hydrogen-as-a-Service (HaaS) provider for commercial fleets looking to reduce emissions and costs with limited risk and no up-front investment ( earlier post ), has delivered its first hydrogen-converted, heavy-duty truck to paying fleet customer Lodgewood Enterprises. —Lodgewood President Arlene Gagne.
through its subsidiary dedicated to the deployment of technologies for the energy transition, NextChem , signed today a memorandum of understanding (MoU) to support the production of green hydrogen via electrolysis in the United States. (EGPNA), and Maire Tecnimont S.p.A., —Salvatore Bernabei, CEO of Enel Green Power.
Gang Liu from the Institute of Metal Research, CAS, has now initiated the establishment of international efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production. Efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production. Credit: DICP.
Universal Hydrogen Co. ACIA expects to place 10 firm orders for Universal Hydrogen’s ATR 72 conversion kits with additional purchase rights for 20 more conversion kits of various turboprop types. The conversion consists of a fuel cell electric powertrain that replaces the existing turboprop engines.
The Abfallentsorgungs-Gesellschaft Ruhrgebiet mbH ( AGR ), a waste management company in Herten, North Rhine-Westphalia, Germany, has put a converted DAF CF 340 hydrogen fuel cell truck into operation as part of the EU-funded HECTOR (Hydrogen Waste Collection Vehicles in North West Europe) project.
Transform Materials has developed a novel and sustainable microwave plasma reactor process to convert natural gas into high-value hydrogen and acetylene, thereby opening up a new pathway for green chemical manufacturing. Oxidation of methane also introduces impurities in the product stream.
The UK’s National Nuclear Laboratory (NNL) and DNV are partnering to explore the potential of nuclear-derived hydrogen to support the conversion of UK gas networks to hydrogen. degrees requires the creation of a robust hydrogen economy. The pathway to 1.5
Energy company SGH2 is bringing the world’s biggest green hydrogenproduction facility to Lancaster, California. SGH2’s gasification process uses a plasma-enhanced thermal catalytic conversion process optimized with oxygen-enriched gas.
Rolls-Royce and easyJet report the world’s first run of a modern aero engine on hydrogen. The ground test was conducted on an early concept demonstrator using green hydrogen created by wind and tidal power. The success of this hydrogen test is an exciting milestone. —Grazia Vittadini, Chief Technology Officer, Rolls-Royce.
The implementation of this project, the first industrial-scale power-to-X-to-power demonstrator with an advanced hydrogen turbine, will be launched at Smurfit Kappa PRF’s site—a company specialized in manufacturing recycled paper—in Saillat-sur-Vienne, France. In this case, the “X” will be hydrogen.
All of these concepts rely on hydrogen as a primary power source—an option which Airbus believes holds exceptional promise as a clean aviation fuel and is likely to be a solution for aerospace and many other industries to meet their climate-neutral targets. —Guillaume Faury, Airbus CEO. —Guillaume Faury.
Universal Hydrogen closed a $62-million new funding round; the oversubscribed round was completed less than six months after the company’s Series A ( earlier post ), bringing total raised to $85 million. Full-scale prototype of Universal Hydrogen's gaseous hydrogen module, with one capsule removed.
In Germany, BSE Engineering and the Institute for Renewable Energy Systems at Stralsund University of Applied Sciences (IRES) have demonstrated the conversion of wind power into renewable methanol. The team uses green electricity to split water into hydrogen and oxygen in an electrolysis step.
The BMW Group Leipzig plant is commissioning 70 more hydrogen-powered tugger trains (indoor tugs). These are used in production to supply the assembly lines with supplier parts. Together with its partners, the consortium is mapping the entire value chain for hydrogen fuel cell systems for indoor logistics.
Researchers from the Technical University of Denmark and Haldor Topsoe, with colleagues from the Danish Technological Institute and Sintex have developed a “ disruptive approach to a fundamental process ” by integrating an electrically heated catalytic structure directly into a steam-methane–reforming (SMR) reactor for hydrogenproduction.
bp is developing plans for the UK’s largest blue hydrogenproduction facility, targeting 1GW of hydrogenproduction by 2030. bp’s hydrogen business and make a major contribution to the UK Government’s target of developing 5GW of hydrogenproduction by 2030.
Researchers at Germany’s Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden have developed an ultra-high-capacity hydrogen storage substance for PEM fuel cell applications based on solid magnesium hydride. Fraunhofer’s POWERPASTE releases hydrogen on contact with water. 1 kg hydrogen).
In a paper in the journal Fuel , the researchers report that the Co-doped graphdiyne catalyst achieved nearly complete decomposition of ammonia at 550 ˚C, and the conversion rate remained stable over 18 h of continuous reaction. Ammonia is by its nature a high-density hydrogen carrier. —Liu et al.
Methanol fuel cell developer and manufacturer Blue World Technologies ( earlier post ) is starting limited production—the first step in commercializing its methanol fuel cell technology. The methanol fuel cell system is based on High-Temperature PEM technology and methanol to hydrogen reforming. Methanol fuel cell production.
The Dutch Institute for Fundamental Energy Research ( DIFFER ) is partnering with Toyota Motor Europe (TME) to develop a device that absorbs water vapor, and splits it into hydrogen and oxygen directly using solar energy. In this project, DIFFER and TME are exploring an innovative way to produce hydrogen directly out of humid air.
In Hamburg, a new development platform is being launched to test hydrogen technology in aviation from as early as 2022. Liquid hydrogen (LH 2 ) is increasingly being more concretely envisaged in the development departments of large aircraft manufacturers as a sustainably producible fuel for future generations of commercial aircraft.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content