This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. This gas–liquid–solid heterogeneous catalytic system synthesizes ammonia in 0.2 The conversion rate reaches 32.9 ± 1.38
Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. This output can help to subsidize the process, offsetting the costs of reducing greenhouse gas emissions.
Researchers in Israel have designed a separate-cell photoelectrochemical (PEC) water-splitting system with decoupled hydrogen and oxygen cells for centralized hydrogen production. A paper describing their system is publishedin the journal Joule. The hydrogen cell contains the cathode, and it is physically separated from the oxygen cell.
In Germany, BSE Engineering and the Institute for Renewable Energy Systems at Stralsund University of Applied Sciences (IRES) have demonstrated the conversion of wind power into renewable methanol. The team uses green electricity to split water into hydrogen and oxygen in an electrolysis step.
The EU-funded SOLAR-JET project has demonstrated the production of aviation kerosene from concentrated sunlight, CO 2 captured from air, and water. The solar reactor technology features enhanced radiative heat transfer and fast reaction kinetics, which are crucial for maximizing the solar-to-fuel energy conversion efficiency.
Audi’s latest e-fuels project is participation in a a pilot plant project in Dresden that produces diesel fuel from water, CO 2 and green electricity. The sunfire plant, which operates according to the “power-to-liquid” (PtL) principle, requires carbon dioxide, water and electricity as raw materials. it can be used as a drop-in fuel.
The catalyst shows a carbon dioxide conversion through hydrogenation to hydrocarbons in the aviation jet fuel range of 38.2%, with a yield of 17.2%, and a selectivity of 47.8%, and with an attendant low carbon monoxide (5.6%) and methane selectivity (10.4%). In brief, the Fe–Mn–K catalyst shows a CO 2 conversion of 38.2%
ReactWell , LLC, has licensed a novel waste-to-fuel technology from the Department of Energy’s Oak Ridge National Laboratory to improve energy conversion methods for cleaner, more efficient oil and gas, chemical and bioenergy production. It can be used by refineries to upgrade their feedstock or to convert biomass to oil.
The Dutch Institute for Fundamental Energy Research ( DIFFER ) is partnering with Toyota Motor Europe (TME) to develop a device that absorbs water vapor, and splits it into hydrogen and oxygen directly using solar energy. Working with gas instead of liquid has several advantages. —Mihalis Tsampas.
BMW i Ventures has invested in Prometheus Fuels ( earlier post ), a company removing CO 2 from the air and turning it into zero-net carbon gasoline that it will sell at gas stations, at a price that competes with fossil fuels, starting as early as this year. The separation of ethanol and other fuel products from water.
BASF researchers have further developed the three-way conversion catalyst and optimized its cleaning effect. The new four-way conversion catalyst, FWC, is a technology for vehicles with gasoline engines. The catalyst removes the gaseous pollutants and now also solids such as particulates from the exhaust gas flow.
A team of researchers in Israel has developed a two-step electrochemical-chemical cycle for decoupled water splitting with high efficiency. In the two-step electrochemical–thermally activated chemical (E-TAC) cycle process, water is reduced to hydrogen gas at the cathode, liberating OH – ions. —Dotan et al. 2H 2 + O 2.
Researchers from the Karlsruhe Institute of Technology (KIT) have successfully produced renewable methane from a biomass-based synthesis gas mixture in their pilot plant for methanation using a new honeycomb catalyst. Biogas facilities produce renewable gas mainly by fermenting biological waste. Honeycomb catalyst.
Carbon dioxide capture company AirCapture and carbon dioxide conversion company OCOchem, along with other partners, have won a $2.93-million OCOchem transforms recycled CO 2 , water and zero-carbon electricity to produce formic acid, a globally traded commodity chemical and emerging electro-fuel.
The mesh with BiVO 4 nanowire photoanode for water oxidation and Rh-SrTiO 3 nanowire photocathode for water reduction produces hydrogen gas without an electron mediator. When immersed in water with visible light irradiation (? ? 400 nm), the mesh produces hydrogen gas. Credit: ACS, Liu et al. Click to enlarge.
Gas chromatography comparison of Conoco fuel and a Conoco-CoolPlanet blend. Cool Planet has devised a biomass-to-liquids thermochemical conversion process that simultaneously produces liquid fuels and sequesterable biochar useful as a soil amendment. One of the catalytic conversion processes creates the high-octane gasoline blendstock.
Researchers from the University of Twente in The Netherlands have developed a new high-entropy perovskite oxide (HEO) as a high-activity electrocatalyst for the oxygen evolution reaction (OER)—the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation.
A research group led by Associate Professor Takashi Tachikawa of Kobe University’s Molecular Photoscience Research Center has developed a strategy that greatly increases the amount of hydrogen produced from sunlight and water using hematite (??Fe Mesocrystal photoanode formation and photochemical water splitting characteristics.
Michael Grätzel at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland has developed a highly efficient and low-cost water-splitting cell combining an advanced perovskite tandem solar cell and a bi-functional Earth-abundant catalyst. conversion efficiency from solar energy to hydrogen, a record with earth-abundant materials.
Researchers at the University of Oregon have advanced the effectiveness of the catalytic water dissociation reaction in bipolar membranes. The technology behind bipolar membranes, which are layered ion-exchange polymers sandwiching a water dissociation catalyst layer, emerged in the 1950s. —Oener et al. —Shannon Boettcher.
Researchers at the Department of Energy’s Pacific Northwest National Laboratory have developed a new method to convert captured CO 2 into methane, the primary component of natural gas. Conventionally, plant operators can capture CO 2 by using special solvents that douse flue gas before it’s emitted from plant chimneys. Heldebrant, D.,
With efficiencies above 90%, Topsoe’s proprietary SOEC electrolyzers offer superior performance in electrolysis of water into hydrogen—e.g., Solid oxide electrolysis cell (SOEC) technology is attractive because of unrivaled conversion efficiencies—a result of favorable thermodynamics and kinetics at higher operating temperatures.
Researchers from the University of North Carolina have synthesized high-photovoltage multijunction Si nanowires (SiNWs) that are co-functionalized to split water catalytically. When integrated with the co-catalysts and suspended in water, these light-activated nanoreactors produced hydrogen gas under visible and infrared light.
One-pot process for conversion of cellulose to hexane, a gasoline component. Researchers at Tohoku University in Japan have developed a one-pot process to convert cellulose to n-hexane in the presence of hydrogen gas. To the best of our knowledge, this conversion process has not yet been reported. Credit: ACS, Liu et al.
storage and conversion, catalysis, gas adsorption and storage, drug and enzyme delivery, and water treatment. Over the past decade they have begun to play an important role in areas such as energy storage and conversion, catalysis, gas adsorption and storage, drug and enzyme delivery, and water treatment.
The new PNNL carbon capture and conversion system brings the cost to capture CO 2 down to about $39 per metric ton. The process takes flue gas from power plants, uses a PNNL-patented solvent to strip out CO 2 , then converts the CO 2 into methanol. The catalysts commonly used for gas-phase CO 2 hydrogenation (e.g.,
Using a hematite photocatalyst, a team led by researchers from Kobe University has succeeded in producing both hydrogen gas and hydrogen peroxide at the same time from sunlight and water. Recently, they have succeeded in increasing the light energy conversion efficiency by applying this technology to hematite (?-Fe under 600nm).
One-pot electrolytic process produces H 2 and solid carbon from water and CO 2. In this study, they focused on the electrolysis component for STEP fuel, producing hydrogen and graphitic carbon from water and carbon dioxide. 2014), “A One-Pot Synthesis of Hydrogen and Carbon Fuels from Water and Carbon Dioxide,” Adv.
In the next few years, the company expects the conversion of one blast furnace to result in an annual demand of around 20,000 tonnes of green hydrogen. This demand will increase to some 720,000 tonnes per year by 2050 as a result of the gradual conversion of the plants and equipment.
Evonik and Siemens Energy commissioned a pilot plant—sponsored by the German Federal Ministry of Education and Research (BMBF)—that uses carbon dioxide and water to produce chemicals. It consists of a CO electrolyzer, developed by Siemens Energy, a water electrolyzer and the bioreactor with Evonik’s know-how.
Porous carbon based layers have become standard electrode materials in many energy conversion and storage applications. For the proton exchange membrane fuel cells (PEMFCs), an optimal balance of water level is critical for high performance and durability. A paper on their work is published in the journal Applied Surface Science.
With SCR twin dosing technology in the exhaust gas system, the diesel unit now undercuts the Euro 6d emission standard limits while also running quietly and smoothly, according to the company. Volkswagen developed twin dosing technology for the exhaust gas treatment. Volkswagen 2.0 TDI diesel for Euro 6d; SCR twin-dosing.
Transportation fuels contribute a significant portion of current CO 2 emissions, accounting for 23% of global greenhouse gas (GHG) emissions and up to 40% of GHGs in developed economies, offering significant opportunities for emissions reduction from the decarbonization of such fuels. —Rob McGinnis. to C 2 fuel products such as ethanol.
The researchers combined a copper electrocatalyst with an ionomer [polymers that conduct ions and water] assembly that intersperses sulfonate-lined paths for the H 2 O with fluorocarbon channels for the CO 2. Here, we present a catalyst:ionomer bulk heterojunction (CIBH) architecture that decouples gas, ion, and electron transport.
one of the largest publicly traded water, wastewater and natural gas providers in the US, serving approximately 5 million people across 10 states under the Aqua and Peoples brands, is launching a pilot program to electrify its two most popular commercial GM vehicle platforms with the XLH hybrid electric drive system.
The feed-stock reduction is achieved primarily by supplementing the process with oxygen and hydrogen produced by water electrolysis units that are powered by clean wind and solar generated electricity. DGF replaces the coal gasification used by others with biomass gasification and natural gas reforming.
Salt deposits are unique geological features into which caverns can be solution mined to provide safe, reliable and economical bulk gas storage. Texas Brine gas storage cavern wellhead. Brine, a mixture of salt and water, is produced during the solution mining of salt formations. Credit: Texas Brine Company).
While Ni metal catalyzes the hydrogen evolution reaction (HER) exclusively under CO 2 RR conditions, Ni single atomic sites present a high CO selectivity of 95% under an overpotential of 550 mV in water, and an excellent stability over 20 hours’ continuous electrolysis. The current density can be scaled up to more than 50 mA cm?2
The researchers and engineers at ETH Zurich have developed innovative processes that make it possible to extract CO 2 from the atmosphere and, together with water and with the help of concentrated sunlight, convert it into a synthesis gas that can be used to produce jet fuel.
The first will react hydrogen with CO 2 to make carbon monoxide (CO) and the second will convert the CO and hydrogen, a blend known as synthesis gas or syngas, into liquid hydrocarbon fuel by Fischer-Tropsch synthesis. Plant capacities ranging from tens of thousands to hundreds of thousands of barrels of fuel per day.
Instead of using H 2 , direct conversion of CO 2 with CH 4 (dry reforming of methane, DRM) to liquid fuels and chemicals (e.g. natural gas, shale gas, biogas and flared gas). acetic acid) represents another promising route for both CO 2 valorisation and CH 4 activation.
Ethanol conversion to hydrocarbons as a function of temp. Benefits of the catalyst technology include: A single step conversion of ethanol into a hydrocarbon blend stock without the addition of hydrogen. Graph showing hydrocarbon distribution in product stream of 10% ethanol after catalytic conversion over Cu-ZSM-5 at 400° C at 12.5
Johnson Matthey has launched HyCOgen, a technologyt designed to play a pivotal role in enabling the conversion of captured carbon dioxide (CO 2 ) and green hydrogen into sustainable aviation fuel (SAF).
One way to mitigate high feedstock cost is to maximize conversion into the bioproduct of interest. This maximization, though, is limited because of the production of CO 2 during the conversion of sugar into acetyl-CoA in traditional fermentation processes. Acetogens are anaerobic bacteria, which cannot grow in oxygenated environments.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content