This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. This gas–liquid–solid heterogeneous catalytic system synthesizes ammonia in 0.2 The conversion rate reaches 32.9 ± 1.38
In Germany, BSE Engineering and the Institute for Renewable Energy Systems at Stralsund University of Applied Sciences (IRES) have demonstrated the conversion of wind power into renewable methanol. The team uses green electricity to split water into hydrogen and oxygen in an electrolysis step.
Researchers in Israel have designed a separate-cell photoelectrochemical (PEC) water-splitting system with decoupled hydrogen and oxygen cells for centralized hydrogen production. A paper describing their system is publishedin the journal Joule. The hydrogen cell contains the cathode, and it is physically separated from the oxygen cell.
Audi’s latest e-fuels project is participation in a a pilot plant project in Dresden that produces diesel fuel from water, CO 2 and green electricity. The sunfire plant, which operates according to the “power-to-liquid” (PtL) principle, requires carbon dioxide, water and electricity as raw materials. The Audi e?gas
The Dutch Institute for Fundamental Energy Research ( DIFFER ) is partnering with Toyota Motor Europe (TME) to develop a device that absorbs water vapor, and splits it into hydrogen and oxygen directly using solar energy. Working with gas instead of liquid has several advantages. —Mihalis Tsampas.
BMW i Ventures has invested in Prometheus Fuels ( earlier post ), a company removing CO 2 from the air and turning it into zero-net carbon gasoline that it will sell at gas stations, at a price that competes with fossil fuels, starting as early as this year. The separation of ethanol and other fuel products from water.
Carbon dioxide capture company AirCapture and carbon dioxide conversion company OCOchem, along with other partners, have won a $2.93-million OCOchem transforms recycled CO 2 , water and zero-carbon electricity to produce formic acid, a globally traded commodity chemical and emerging electro-fuel.
With efficiencies above 90%, Topsoe’s proprietary SOEC electrolyzers offer superior performance in electrolysis of water into hydrogen—e.g., Solid oxide electrolysis cell (SOEC) technology is attractive because of unrivaled conversion efficiencies—a result of favorable thermodynamics and kinetics at higher operating temperatures.
A research group led by Associate Professor Takashi Tachikawa of Kobe University’s Molecular Photoscience Research Center has developed a strategy that greatly increases the amount of hydrogen produced from sunlight and water using hematite (??Fe Mesocrystal photoanode formation and photochemical water splitting characteristics.
Michael Grätzel at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland has developed a highly efficient and low-cost water-splitting cell combining an advanced perovskite tandem solar cell and a bi-functional Earth-abundant catalyst. conversion efficiency from solar energy to hydrogen, a record with earth-abundant materials.
Researchers at the University of Oregon have advanced the effectiveness of the catalytic water dissociation reaction in bipolar membranes. The technology behind bipolar membranes, which are layered ion-exchange polymers sandwiching a water dissociation catalyst layer, emerged in the 1950s. —Oener et al. —Shannon Boettcher.
Researchers from the University of North Carolina have synthesized high-photovoltage multijunction Si nanowires (SiNWs) that are co-functionalized to split water catalytically. When integrated with the co-catalysts and suspended in water, these light-activated nanoreactors produced hydrogen gas under visible and infrared light.
carbon monoxide evolving catalyst (Bi-CMEC) that can be used in conjunction with ionic liquids to convert CO 2 to carbon monoxide (CO) using electricity. CO can then be reacted with H 2 O via the water?gas Researchers at the University of Delaware have developed an inexpensive bismuth?carbon Tropsch methods.
Evonik and Siemens Energy commissioned a pilot plant—sponsored by the German Federal Ministry of Education and Research (BMBF)—that uses carbon dioxide and water to produce chemicals. The necessary energy is supplied by electricity from renewable sources. The pilot plant is located in Marl, in the northern Ruhr area.
In the next few years, the company expects the conversion of one blast furnace to result in an annual demand of around 20,000 tonnes of green hydrogen. This demand will increase to some 720,000 tonnes per year by 2050 as a result of the gradual conversion of the plants and equipment.
Recent breakthroughs in separations and catalysis, along with long-trend reductions in solar and wind electricity costs, have significantly increased the potential for cost-competitive renewable fuels from direct air capture (DAC) of CO 2. The separation of ethanol and other fuel products from water. —Rob McGinnis.
one of the largest publicly traded water, wastewater and natural gas providers in the US, serving approximately 5 million people across 10 states under the Aqua and Peoples brands, is launching a pilot program to electrify its two most popular commercial GM vehicle platforms with the XLH hybrid electric drive system.
Bitumen production from the Canadian oil sands provides a point of reference that could be used to observe and better manage the land and water impacts of a rapid transition to unconventional fuels, suggests Dr. Sarah Jordaan of the Energy Technology Innovation Policy Research Group, Department of Earth and Planetary Sciences, Harvard University.
The researchers combined a copper electrocatalyst with an ionomer [polymers that conduct ions and water] assembly that intersperses sulfonate-lined paths for the H 2 O with fluorocarbon channels for the CO 2. Here, we present a catalyst:ionomer bulk heterojunction (CIBH) architecture that decouples gas, ion, and electron transport.
Researchers from SRI International (SRI) are developing a methane-and-coal-to-liquids process that consumes negligible amounts of water and does not generate carbon dioxide. If biogas is substituted for conventional natural gas, total GHG emissions can further significantly reduced (190 gCO 2 /mile). Top: Conventional F-T process.
Marine classification society ABS has issued its first Approval in Principle (AIP) for a new concept renewable energy design in which a moored spar uses ammonia in a closed-cycle process to produce electrical power for a commercial utility grid. OTEC power cycle. Click to enlarge.
The feed-stock reduction is achieved primarily by supplementing the process with oxygen and hydrogen produced by water electrolysis units that are powered by clean wind and solar generated electricity. DGF replaces the coal gasification used by others with biomass gasification and natural gas reforming.
A key benefit of this joint effort is the direct coordination of NSF-funded use-inspired basic research and EERE-funded applied R&D toward the development of cost-effective large-scale systems for the low-carbon production of hydrogen through advanced solar water-splitting technologies.
A research team at the University of Wisconsin–Madison has identified a new way to convert ammonia to nitrogen gas through a process that could be a step toward ammonia replacing carbon-based fuels. This process can be harnessed to produce electricity, with protons and nitrogen gas as byproducts.
The researchers and engineers at ETH Zurich have developed innovative processes that make it possible to extract CO 2 from the atmosphere and, together with water and with the help of concentrated sunlight, convert it into a synthesis gas that can be used to produce jet fuel.
volts versus the reversible hydrogen electrode) in CO-saturated alkaline water. For the Nature study, Kanan and Li built an electrochemical cell: two electrodes placed in water saturated with carbon monoxide gas. 57% of the electric current went into producing these two compounds from carbon monoxide).
Fraunhofer’s POWERPASTE releases hydrogen on contact with water. Specific energies and energy densities including conversion losses. Hydrogen is not currently an option for small vehicles such as electric scooters and motorcycles, since the pressure surge during refilling would be too great. 10 kg POWERPASTE ? 1 kg hydrogen).
In the Solar Thermal Electrochemical Process (STEP), developed by Professor Stuart Licht and his group at GWU, solar UV–visible energy is focused on a photovoltaic device that generates the electricity to drive the electrolysis, while concurrently the solar thermal energy is focused on a second system to generate heat for the electrolysis cell.
Instead of using H 2 , direct conversion of CO 2 with CH 4 (dry reforming of methane, DRM) to liquid fuels and chemicals (e.g. natural gas, shale gas, biogas and flared gas). Xin Tu, from the University’s Department of Electrical Engineering and Electronics.
The calculations of reaction energetics suggest that Cu and Fe in the binary system can work in synergy to significantly deform the linear configuration of CO 2 and reduce the high energy barrier by stabilizing the reaction intermediates, thus spontaneously favoring CO 2 activation and conversion for methane synthesis.
The 22 selected projects fall into five topic areas for the “Bioenergy Technologies Office Scale-Up and Conversion” funding opportunity ( earlier post ): Scale-Up of Biotechnologies. Affordable, Clean Cellulosic Sugars for High Yield Conversion. Separations to Enable Biomass Conversion. Renewable Natural Gas.
A team from Washington State University (WSU) and the Gas Technology Institute have used an ethanol and water mixture and a small amount of electricity in an electrochemical conversion system to produce pure compressed hydrogen. Without using a membrane, the only gas-phase species is H2. —Kee et al.
Researchers at the Pacific Northwest National Laboratory report on a highly efficient, small-scale solid oxide fuel cell system featuring PNNL-developed microchannel technology in combination with adiabatic, external steam reforming and anode gas recirculation. On the other side is a cooler gas that is heading toward the fuel cell.
Nel Hydrogen Electrolyser AS, a division of Nel ASA, has received a purchase order for a 20MW alkaline water electrolyzer from Ovako , a leading European manufacturer of engineering steel. The fossil-free hydrogen will replace the use of fossil propane gas currently used in the heating furnaces.
The “PV+Storage” box includes the high cost of electrical storage for PV. The FOCUS Program target zone for electricity generation is indicated. Concentrating solar power (CSP), solar heating and solar hot water applications combined contribute less than 0.1% Source: ARPA-E. Click to enlarge.
Conventional methanol production involves fossil feedstocks such as natural gas or coal. The CRI process takes waste gases captured from the points of emission at the stack and transfers them to a gas conditioning system where impurities are removed to produce carbon dioxide suitable for downstream methanol synthesis.
Blue World Technologies’ complete system includes a methanol reformer for fuel conversion, DC/DC for power conversion and fuel cell stack for power production. The high-temperature (HT) PEM technology operates at 160-180 °C and has a high resistance to impurities in reformat gas—making it suitable to combine with fuel reformers.
Generation 3 avoids the need for the Haber-Bosch process entirely by direct electrochemical conversion of N 2 to NH 3. The process generates H 2 from natural gas or coal through steam reforming and combines it with N 2 , which has been separated from air by a cryogenic process, to form NH 3.
Up to £40,000 (US$62,160) was made available to cover parts of the costs of developing a detailed feasibility study for a 1MW power-to-gas facility to be built in the UK starting in the second half of 2013. CNG Services are supporting the Project in relation to site selection and engineering, especially with regard to gas grid injection.
The pilot plant has a direct reduction shaft, where the reduction takes place, and a number of electrolyzers for the production of hydrogen using fossil-free electricity. This marks the first time that iron ore has been directly reduced with hydrogen produced with fossil-free electricity on a pilot scale.
Sandia National Laboratories researchers recently delivered electricity produced by a new power-generating system to the Sandia-Kirtland Air Force Base electrical grid. The system uses heated supercritical carbon dioxide instead of steam to generate electricity and is based on a closed-loop Brayton cycle.
The cost of electrofuels—fuels produced by catalyst-based systems for light capture, water electrolysis, and catalytic conversion of carbon dioxide and hydrogen to liquid fuels—remains far away from viable, according to a new analysis by Lux Research. Hydrogen-to-fuels. Biotech Fuels Solar'
Methane Converter to Electricity and Fuel. gas into a liquid transportation fuel by combining fuel cell. In contrast, this reactor produces electricity as a byproduct of fuel production. provide not only liquid fuel but also electricity, increasing the. utility of geographically isolated gas reserves. University.
In MECs, an electrical current is coupled with bacteria to decompose organics and make hydrogen. The research team started with the MoP combination because of its affinity for activating, or separating, water molecules. —Yuyan Shao, corresponding author. The catalyst also worked with wastewater, another ubiquitous resource.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content