This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Universal Hydrogen ( earlier post ) has signed LOIs with Icelandair Group (Iceland), Air Nostrum (Spain), and Ravn Air (Alaska) for aftermarket conversion of aircraft to hydrogen propulsion and for the supply of green hydrogen fuel using Universal Hydrogen’s modular capsules. Icelandair. Icelandair.
Universal Hydrogen has flown a 40-passenger regional airliner using hydrogen fuel cell propulsion. In this first test flight, one of the airplane’s turbine engines was replaced with Universal Hydrogen’s fuel cell-electric, megawatt-class powertrain. The other remained a conventional engine for safety of flight.
Universal Hydrogen announced $20.5-million Founded in 2020 by aviation industry veterans Paul Eremenko, John-Paul Clarke, Jason Chua, and Jon Gordon, Universal Hydrogen is stitching together the end-to-end hydrogen value chain for aviation, both for hydrogen fuel and hydrogen-powered airplanes.
Researchers at the University of Oxford have developed a method to convert CO 2 directly into aviation fuel using a novel, inexpensive iron-based catalyst. The conversion reaction also produces light olefins—ethylene, propylene, and butenes—totalling a yield of 8.7%. and selectivity to C 8 –C 16 hydrocarbons of 47.8%
The development of catalysts free of platinum-group metals and with both a high activity and durability for the oxygen reduction reaction in proton exchange membrane fuel cells is a grand challenge. bar H 2 /O 2 fuel cells, higher than that of non-iron platinum-group-metal-free catalysts reported in the literature. —Xie et al.
Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. The movement through water is sluggish, which slows the rate of conversion of the carbon dioxide.
Universal Hydrogen was granted a special airworthiness certificate in the experimental category by the Federal Aviation Administration (FAA) to proceed with the first flight of its hydrogen-powered regional aircraft. The Dash 8-300 flying testbed has a megawatt-class hydrogen fuel cell powertrain installed in one of its nacelles.
Universal Hydrogen Co. ACIA expects to place 10 firm orders for Universal Hydrogen’s ATR 72 conversion kits with additional purchase rights for 20 more conversion kits of various turboprop types. The conversion consists of a fuel cell electric powertrain that replaces the existing turboprop engines.
Universal Hydrogen closed a $62-million new funding round; the oversubscribed round was completed less than six months after the company’s Series A ( earlier post ), bringing total raised to $85 million. Full-scale prototype of Universal Hydrogen's gaseous hydrogen module, with one capsule removed.
Kazunari Domen from The University of Tokyo, Prof. Lianzhou Wang from The University of Queensland, Prof. Gang Liu from the Institute of Metal Research, CAS, has now initiated the establishment of international efficiency accreditation and testing protocols for particulate photocatalysts toward solar fuel production.
In Germany, BSE Engineering and the Institute for Renewable Energy Systems at Stralsund University of Applied Sciences (IRES) have demonstrated the conversion of wind power into renewable methanol. In the future, the fuel-cell-suitable crude methanol as well as the cleaned methanol will be sold industrially as e-fuel.
Universal Hydrogen, magniX, Plug Power and AeroTEC have established a Hydrogen Aviation Test and Service Center at Grant County International Airport in Moses Lake, Washington. The conversion work for US-based airlines, flight test, as well as continuing airworthiness support would be based in AeroTEC’s Moses Lake facility.
Initiated by MAN with partners from industry and research institutes, it aims to define the steps necessary to produce a dual-fuel, medium-speed engine capable of running on diesel-fuel and ammonia. MAN Energy Solutions Two-Stroke Business has already announced that it will deliver ammonia-fueled engines by 2024.
QM Power and the SPARK Lab at University of Kentucky shared the combined results of a large-scale, multi-objective design optimization study, and lab testing of a prototype motor designed to meet the 2025 power density goals set by the US Department of Energy (DOE). Ionel, FIEEE, who serves as the inaugural L.
Researchers at Stanford University have shown that porous polymer encapsulation of metal-supported catalysts can drive the selectivity of CO 2 conversion to hydrocarbons. This work was supported by grants from the Packard Foundation and the Precourt Institute for Energy at Stanford University. That would be a big deal.
(CMAL) to partner in designing a hydrogen fuel-cell sea-going passenger and car ferry—a first for Europe. The HySeas III string test will consist of the following components: Fuel cell system (consisting of 6 100kW Ballard HD-100 fuel cells). This is part of HYSEAS III , a Horizon 2020 funded project ( earlier post ).
Cranfield Aerospace Solutions (CAeS)—the UK SME leading the Project Fresson consortium—will exploit recent advances in hydrogen fuel cell technology to develop a commercially viable, retrofit powertrain solution for the nine-passenger Britten-Norman Islander aircraft.
Currently, liquid products generated by electrochemical carbon dioxide reduction-reaction systems have been mixed with liquid electrolytes/soluble solutes, which requires energy- and cost-intensive separation processes to recover pure liquid fuel solutions. We address both materials-level design and device-level engineering.
The electrocatalytic conversion of CO 2 using renewable energy could establish a climate-neutral, artificial carbon cycle. Excess energy produced by photovoltaics and wind energy could be stored through the electrocatalytic production of fuels from CO 2. These could then be burned as needed. Credit: Angewandte Chemie. and Xiong, Y.
A study by a team at University of Illinois at Urbana−Champaign has found that, with currently achievable performance levels, synthetic fuels produced via the electrochemical reduction of CO 2 and the Fischer-Tropsch (FT) process system are not economically and environmentally competitive with using petroleum-based fuel.
A team at the University of Pennsylvania is proposing the use of a liquid-organic hydrogen carrier (LOHC)—specifically, 1,2,3,4 -tetrahydroquinoline (THQ)—for use as an endothermic fuel for thermal protection of hypersonic aircraft engines. A paper on their work is published in the journal Fuel. earlier this year.
Researchers at the National Institute of Standards and Technology (NIST) and their colleagues have demonstrated a room-temperature method that could significantly reduce carbon dioxide levels in fossil-fuel power plant exhaust, one of the main sources of carbon emissions in the atmosphere.
The EU-funded research project HyFlexFuel recently successfully produced biocrudes via hydrothermal liquefaction (HTL) from a variety of biomasses, including sewage sludge, food waste, manure, wheat straw, corn stover, pine sawdust, miscanthus and microalgae in a pilot-scale continuous HTL plant at Aarhus University (Denmark).
OXCCU, a company spun-out from the University of Oxford in 2021 that is focused on converting carbon dioxide and hydrogen into industrial and consumer products ( earlier post ), completed an £18-million (US$22.8 million) Series A financing round. Trafigura, TechEnergy Ventures and Doral Energy-Tech Ventures also participated in the financing.
Carbon dioxide capture company AirCapture and carbon dioxide conversion company OCOchem, along with other partners, have won a $2.93-million OCOchem transforms recycled CO 2 , water and zero-carbon electricity to produce formic acid, a globally traded commodity chemical and emerging electro-fuel.
Carbon transformation company Twelve (formerly Opus 12, earlier post ) has produced the first fossil-free jet fuel—called E-Jet—from CO 2 electrolysis, demonstrating a scalable, energy-efficient path to the de-fossilization of global aviation. Since you can’t electrify the plane, we’ve electrified the fuel.
A team from King Abdullah University of Science and Technology (KAUST), Beijing Institute of Nanoenergy and Nanosystems, and Georgia Tech has developed a a wave-energy-driven electrochemical CO 2 reduction system that converts ocean wave energy to chemical energy in the form of formic acid, a liquid fuel. Leung et al.
Recent research in electrocatalytic CO 2 conversion points the way to using CO 2 as a feedstock and renewable electricity as an energy supply for the synthesis of different types of fuel and value-added chemicals such as ethylene, ethanol, and propane. Their paper is published in Proceedings of the National Academy of Sciences (PNAS).
The SOLETAIR project ( earlier post ) has produced its first 200 liters of synthetic fuel from solar energy and the air’s carbon dioxide via Fischer-Tropsch synthesis. An electrolysis unit developed by Lappeenranta University of Technology (LUT) uses solar power to produce the required hydrogen.
A team of Brown University researchers has fine-tuned a copper catalyst to produce complex hydrocarbons—C 2+ products—from CO 2 with high efficiency. An open-access paper on the work is published in Nature Communications.
An electrolysis unit developed by Lappeenranta University of Technology (LUT) produces the required hydrogen by means of solar power. A microstructured, chemical reactor—the key component of the plant—converts the hydrogen produced from solar power together with carbon dioxide into liquid fuels.
Researchers at Ariel University in Israel have developed a new type of hydrogen generator for “on-demand” use with fuel cells. In a paper published in the ACS journal Energy & Fuels , the team reported that during 6.3 1c00367.
Researchers at Linköping University, Sweden, are attempting to convert carbon dioxide to fuel using energy from sunlight. Jianwu Sun and his colleagues at Linköping University are attempting to imitate photosynthesis to capture carbon dioxide from air and to convert it to chemical fuels, such as methane, ethanol and methanol.
Researchers at the University of Twente’s MESA+ research institute have made significant efficiency improvements to the technology used to generate solar fuels. Researchers around the world are working on the development of solar fuel technology. This involves generating sustainable fuels using only sunlight, CO 2 and water.
Twenty-three of the projects receiving funding are headed by universities, eight are led by the Energy Department’s National Laboratories and one project is run by a non-profit organization. Light-Material Interactions in Energy Conversion (LMI). University of California, Berkeley. University of California, Riverside.
Researchers at Stanford University have developed a nanocrystalline copper material that produces multi-carbon oxygenates (ethanol, acetate and n-propanol) with up to 57% Faraday efficiency at modest potentials (–0.25?volts Ultimately, this might enable a closed-loop, emissions free CO 2 -to-fuel process. volts to –0.5?volts
An interdisciplinary team at Northwestern University has found that the enzyme responsible for the methane-methanol conversion catalyzes this reaction at a site that contains just one copper ion. Credit: Northwestern University. Our study provides a major leap forward in understanding how bacteria methane-to-methanol conversion.
As a result, there is a critical need to create new pathways for biofuel conversion that reduces carbon waste, prevents the loss of CO 2 emissions, and in turn, maximizes the amount of renewable fuel a conversion process yields. University of Wisconsin-Madison. The awardees are: LanzaTech, Inc.
At the US Department of Energy’s (DOE’s) Annual Merit Review meeting in Washington, DC last week, Michael Ruth from Cummins noted that the DOE program target for the project is a fuel economy (CAFE) target of 26 mpg (9.05 Earlier post.). l/100 km), and as such would not meet the GHG requirement of 28 mpg (8.4
Researchers led by a team at Washington State University (WSU) have developed a unique and inexpensive nanoparticle catalyst that allows a solid-oxide fuel cell to convert logistic liquid fuels such as gasoline to electricity without stalling out during the electrochemical process. —Qusay Bkour, lead author. Bkour et al.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. —senior author Professor Erwin Reisner.
Mexico-based global construction materials company CEMEX is partnering with integrated chemicals and energy company Sasol ecoFT and renewable energy company ENERTRAG to combine CO 2 with hydrogen to produce sustainable aviation fuel. In the second phase , larger quantities of hydrogen are to be supplied by pipeline.
University of Colorado Boulder researchers have developed nanobio-hybrid organisms capable of using airborne carbon dioxide and nitrogen to produce a variety of plastics and fuels, a promising first step toward low-cost carbon sequestration and eco-friendly manufacturing for chemicals. —Prashant Nagpal. Yuchen Ding, John R.
A team from the University of Calgary and Rice University has used flash joule heating (FJH) ( earlier post ) to convert low-value asphaltenes—a by-product of crude oil refining—into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG). Flash graphene from asphaltenes. (A)
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content