This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
A study by a team of researchers from Technische Universität Berlin (TUB) and Fritz-Haber-Institut der Max-Planck-Gesellschaft has found that direct seawater splitting for hydrogen production has substantial drawbacks compared to conventional water splitting and offers almost no advantage. Additionally, H 2 O is needed for water splitting.
Researchers from the University of Michigan and McGill University in Canada report photochemical syngas synthesis using a core/shell Au@Cr 2 O 3 dual cocatalyst in coordination with multistacked InGaN/GaN nanowires (NWs) with the sole inputs of CO 2 , water, and solar light. This will significantly reduce overall CO 2 emissions.
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. The conversion rate reaches 32.9 ± 1.38 Water microdroplets are the hydrogen source for N 2 in contact with Fe 3 O 4.
Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. The movement through water is sluggish, which slows the rate of conversion of the carbon dioxide.
Photoelectrochemical (PEC) water splitting based on solar energy is one promising approach for the production of green hydrogen. However, its widespread application is limited by a lack of efficient photoanodes for catalyzing the rate-limiting oxygen evolution reaction (OER), an important reaction in PEC water splitting.
Researchers at the University of Cambridge, with colleagues at the University of Tokyo, have developed a standalone device that converts sunlight, carbon dioxide and water into formic acid, a carbon-neutral fuel, without requiring any additional components or electricity. Nature Energy doi: 10.1038/s41560-020-0678-6. Qian Wang et al.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. Alongside hydrogen generation from water, the multi-disciplinary research team is investigating photochemical conversion of carbon dioxide into synthetic fuel.
Researchers in Israel have designed a separate-cell photoelectrochemical (PEC) water-splitting system with decoupled hydrogen and oxygen cells for centralized hydrogen production. A paper describing their system is publishedin the journal Joule. The hydrogen cell contains the cathode, and it is physically separated from the oxygen cell.
developed a halogen conversion–intercalation chemistry in graphite that produces composite electrodes with a capacity of 243 mAh g -1 (for the total weight of the electrode) at an average potential of 4.2 Proposed conversion–intercalation chemistry. A team of researchers led by a group from the University of Maryland has. V) and Cl ?
Compass Minerals, a leading global provider of essential minerals, announced the successful, third-party conversion testing of its lithium brine resource into both lithium carbonate and battery-grade lithium hydroxide, representing a significant milestone in its previously announced lithium development project. Source: Compass Minerals.
The US Department of Energy (DOE) released a new report, Hybrid Energy Systems: Opportunities for Coordinated Research , highlighting innovative opportunities to spur joint research on hybrid energy systems (HES). using electrical or thermal energy to produce hydrogen from water or a methane source).
Audi’s latest e-fuels project is participation in a a pilot plant project in Dresden that produces diesel fuel from water, CO 2 and green electricity. The sunfire plant, which operates according to the “power-to-liquid” (PtL) principle, requires carbon dioxide, water and electricity as raw materials.
In Germany, BSE Engineering and the Institute for Renewable Energy Systems at Stralsund University of Applied Sciences (IRES) have demonstrated the conversion of wind power into renewable methanol. The team uses green electricity to split water into hydrogen and oxygen in an electrolysis step.
The nanostructured photoelectrode results in spontaneous hydrogen evolution from water without any external bias applied with a faradaic efficiency of 30% and excellent stability. A promising way of storing solar energy is via chemical fuels, in particular hydrogen as it is considered as a future energy carrier.
The Dutch Institute for Fundamental Energy Research ( DIFFER ) is partnering with Toyota Motor Europe (TME) to develop a device that absorbs water vapor, and splits it into hydrogen and oxygen directly using solar energy. One of these sustainable fuels is hydrogen, which can be used to store renewable energy.
Researchers at the University of Oklahoma, in collaboration with the University of Tulsa, have a novel approach for the water-assisted upgrading of the renewable chemical furfural, doubling or tripling the rate of conversion. Energy and water are interconnected in the production of renewable fuels. —Zhao et al.
The US Department of Energy (DOE) issued a $12-million Funding Opportunity Announcement (DE?FOA?0002823 0002823 ) to support the extraction and conversion of lithium from geothermal brines to use in batteries for stationary storage and electric vehicles. Lithium hydroxide is used in the manufacture of lithium battery electrodes.
The discovery of this technique, which uses a metal catalyst and releases—rather than requires—energy, was reported in Nature Chemistry and has received a provisional patent from the Wisconsin Alumni Research Foundation. This work was supported by the US Department of Energy (DOE). —Trenerry et al. Resources.
ReactWell , LLC, has licensed a novel waste-to-fuel technology from the Department of Energy’s Oak Ridge National Laboratory to improve energyconversion methods for cleaner, more efficient oil and gas, chemical and bioenergy production. —ORNL’s Adam Rondinone, co-inventor of the carbon dioxide-to-ethanol catalyst.
A team of researchers in Israel has developed a two-step electrochemical-chemical cycle for decoupled water splitting with high efficiency. The method is described in a paper in the journal Nature Energy. Schematic of alkaline water electrolysis and the E-TAC water-splitting process. —Dotan et al.
Evonik and Siemens Energy commissioned a pilot plant—sponsored by the German Federal Ministry of Education and Research (BMBF)—that uses carbon dioxide and water to produce chemicals. The necessary energy is supplied by electricity from renewable sources. The pilot plant is located in Marl, in the northern Ruhr area.
The catalyst shows a carbon dioxide conversion through hydrogenation to hydrocarbons in the aviation jet fuel range of 38.2%, with a yield of 17.2%, and a selectivity of 47.8%, and with an attendant low carbon monoxide (5.6%) and methane selectivity (10.4%). In brief, the Fe–Mn–K catalyst shows a CO 2 conversion of 38.2%
Utilization of renewable solar energy is crucial for addressing the global energy and environmental concerns and achieving sustainable development. In this regard, photocatalytic water splitting has attracted significant interest as a cost-effective means to convert sustainable solar energy into valuable chemicals.
The Honda Smart Home US integrates a number of technologies, and is managed by Honda’s Home Energy Management System (HEMS). The home’s occupant will be able to use less than half of the energy of a similarly sized new home in the Davis area for heating, cooling and lighting. Click to enlarge. Photo by Dorian Toy. Click to enlarge.
Carbon dioxide capture company AirCapture and carbon dioxide conversion company OCOchem, along with other partners, have won a $2.93-million OCOchem transforms recycled CO 2 , water and zero-carbon electricity to produce formic acid, a globally traded commodity chemical and emerging electro-fuel.
The conversion of CO 2 to fuels in these inexpensive water-based systems has shown high faradic efficiencies for reduction of CO 2. The separation of ethanol and other fuel products from water. Aqueous CO 2 electrolysis with base-metal catalysts. to C 2 fuel products such as ethanol.
Wärtsilä will supply its Wärtsilä HY Module , a containerized hybrid battery power and energy storage system to Maersk Supply Service, the Denmark-based provider of offshore marine services and integrated solutions for the global energy sector. This is believed to be the world’s first AHTS hybrid battery conversion.
Researchers from the University of Twente in The Netherlands have developed a new high-entropy perovskite oxide (HEO) as a high-activity electrocatalyst for the oxygen evolution reaction (OER)—the key kinetically limiting half-reaction in several electrochemical energyconversion technologies, including green hydrogen generation.
A research group led by Associate Professor Takashi Tachikawa of Kobe University’s Molecular Photoscience Research Center has developed a strategy that greatly increases the amount of hydrogen produced from sunlight and water using hematite (??Fe Mesocrystal photoanode formation and photochemical water splitting characteristics.
Researchers from the US Department of Energy’s (DOE) Argonne National Laboratory have combined two membrane-bound protein complexes to perform a complete conversion of water molecules to hydrogen and oxygen. The research was funded by the DOE Office of Science, Basic Energy Sciences Program. —Utschig et al.
Researchers from the University of North Carolina have synthesized high-photovoltage multijunction Si nanowires (SiNWs) that are co-functionalized to split water catalytically. When integrated with the co-catalysts and suspended in water, these light-activated nanoreactors produced hydrogen gas under visible and infrared light.
Researchers at the University of Oregon have advanced the effectiveness of the catalytic water dissociation reaction in bipolar membranes. The technology behind bipolar membranes, which are layered ion-exchange polymers sandwiching a water dissociation catalyst layer, emerged in the 1950s. —Oener et al. —Shannon Boettcher.
The proposed generator is portable and lightweight; has high energy density; is easy to use, refill, and clean; and is designed for long working periods with the capability for restart after prolonged rests. This system is significantly lighter and requires much less operating energy than other similar generators, the researchers said.
Using a hematite photocatalyst, a team led by researchers from Kobe University has succeeded in producing both hydrogen gas and hydrogen peroxide at the same time from sunlight and water. Hydrogen has gained attention as one of the possible next generation energy sources. under 600nm). Mesocrystal technology. Tachikawa et al.
Topsoe and Steeper Energy , a developer of biomass conversion technologies, signed a global licensing agreement for a complete waste-to-fuel solution. The unique composition of Hydrofaction Oil means that it is particularly energy-dense with a heating value of about 38 MJ/kg.
Researchers at Linköping University, Sweden, are attempting to convert carbon dioxide to fuel using energy from sunlight. Recent results have shown that it is possible to use their technique selectively to produce methane, carbon monoxide or formic acid from carbon dioxide and water. Li et al. , ACS Nano 2020, 14, 4, 4905-4915.
So far, renewable diesel and jet fuels are mainly derived from plant oils, but the EU Renewable Energy Directive limits the use of biofuel from food and feed crops since they do not meet sustainability requirements when produced at large scale.
The US Department of Energy (DOE) awarded $22.1 million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. This funding opportunity is administered by DOE’s Office of Nuclear Energy (NE).
Ammonia, produced via the Haber-Bosch (HB) process, is globally the leading chemical in energy consumption and carbon dioxide emissions. In ammonia plants, hydrogen is generated by steam-methane reforming (SMR) and water-gas shift (WGS) and, subsequently, is purified for the high-pressure ammonia synthesis. Kyriakou et al.
This zero-emission train emits low levels of noise, with exhaust being only steam and condensed water. The iLint is special for its combination of different innovative elements: clean energyconversion, flexible energy storage in batteries, and smart management of traction power and available energy.
With efficiencies above 90%, Topsoe’s proprietary SOEC electrolyzers offer superior performance in electrolysis of water into hydrogen—e.g., Solid oxide electrolysis cell (SOEC) technology is attractive because of unrivaled conversion efficiencies—a result of favorable thermodynamics and kinetics at higher operating temperatures.
A fast, green and one-step method for producing porous carbon spheres—a component for carbon capture technology and for new ways of storing renewable energy—has been developed by Swansea University researchers. storage and conversion, catalysis, gas adsorption and storage, drug and enzyme delivery, and water treatment.
Electrification of the global vehicle fleet, which now totals over 1 billion cars and trucks, or conversion of vehicles to use novel fuels like hydrogen, cannot proceed quickly enough to address the climate crisis. The separation of ethanol and other fuel products from water. Aqueous CO 2 electrolysis with base-metal catalysts.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content