This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
ULEMCo, the UK company converting commercial vehicles to run on hydrogen, has commenced the largest single deployment of hydrogen dual fuel vehicles yet. This follows an order secured with Scottish company James A Cuthbertson Ltd, to transform Glasgow City Council’s existing fleet and some new gritters to be hydrogen-enabled.
Universal Hydrogen ( earlier post ) has signed LOIs with Icelandair Group (Iceland), Air Nostrum (Spain), and Ravn Air (Alaska) for aftermarket conversion of aircraft to hydrogen propulsion and for the supply of green hydrogen fuel using Universal Hydrogen’s modular capsules. Icelandair. Icelandair.
SK Corp, the holding company of SK Group, has made a strategic investment in Monolith , a US company that has developed a plasma-based process to produce “cyan” hydrogen—between green (via electrolysis using renewable energy) and blue (conversion of methane accompanied by CO 2 capture and storage). The Monolith process.
Essen-based energy company STEAG, Duisburg-based steel producer thyssenkrupp Steel and Dortmund-based thyssenkrupp Uhde Chlorine Engineers, specializing in electrolysis technology, are working on a joint feasibility study. They endorse the development of a hydrogen economy and infrastructure in Germany and in Europe. Hans Blossey.
Although the thermocatalytic ammonia decomposition reaction (ADR) is an effective way to obtain clean hydrogen, it relies on the use of expensive and rare ruthenium (Ru)-based catalysts, making it not sustainable or economically feasible. A complete ammonia conversion to hydrogen was achieved at an economically feasible 450 ?C
Alstom will supply six hydrogen fuel cell trains, with the option for eight more, to FNM (Ferrovie Nord Milano), the main transport and mobility group in the Italian region of Lombardy, for a total amount of approximately €160 million. The hydrogen version will match the operational performance of diesel trains, including their range.
Using a hematite photocatalyst, a team led by researchers from Kobe University has succeeded in producing both hydrogen gas and hydrogen peroxide at the same time from sunlight and water. Hydrogen has gained attention as one of the possible next generation energy sources. under 600nm). Mesocrystal technology.
Rolls-Royce is further developing its mtu gas engine portfolio for power generation and cogeneration to run on hydrogen as a fuel and thus enable a climate-neutral energy supply. Already today, gensets powered by mtu Series 500 and Series 4000 gas engines can be operated with a gas blending of 10% hydrogen.
Researchers at Ariel University in Israel have developed a new type of hydrogen generator for “on-demand” use with fuel cells. Hydrogen is produced in a catalytic hydrolysis reaction of sodium borohydride (NaBH 4 ) with ruthenium powder as a catalyst. —Zakhvatkin et al. 1c00367.
China-based SANY, one of the largest construction equipment manufacturers in the world, is developing hydrogen fuel cell construction vehicles; two recent examples include a dump truck and a mixer truck, freshly rolled out of SANY’s intelligent flagship factory. The latter is the first hydrogen-powered mixer truck in the world.
An international collaboration of scientists has taken a significant step toward the realization of a nearly “green” zero-net-carbon technology that can efficiently convert CO 2 and hydrogen into ethanol. None of the three components examined in the study is able to individually catalyze the CO 2 -to-ethanol conversion, nor can they in pairs.
SSAB, LKAB and Vattenfall have now produced hydrogen-reduced sponge iron on a pilot scale. The test production was carried out in HYBRIT’s pilot plant in Luleå and shows that it is possible to reduce iron ore with fossil-free hydrogen, instead of removing the oxygen with coal and coke. So far, about 100 tons have been produced.
Researchers at The Ohio State University have used a chemical looping process to produce hydrogen from hydrogen sulfide gas—commonly called “sewer gas”. Hydrogen sulfide is emitted from manure piles and sewer pipes and is a key byproduct of industrial activities including refining oil and gas, producing paper and mining.
Scottish Enterprise, Transport Scotland and the Hydrogen Accelerator, based at the University of St Andrews, have appointed Arcola Energy and a consortium of industry leaders in hydrogen fuel cell integration, rail engineering and functional safety to deliver Scotland’s first hydrogen powered train.
China-based Dongfang Electric Corporation (DEC) reported successful testing of non-desalinated seawater electrolysis technology for hydrogen production powered by offshore wind. The floating hydrogen production platform Dongfu One is sited in an offshore wind farm in East China’s Fujian province. —Xie et al. Resources Xie, H.,
With efficiencies above 90%, Topsoe’s proprietary SOEC electrolyzers offer superior performance in electrolysis of water into hydrogen—e.g., Solid oxide electrolysis cell (SOEC) technology is attractive because of unrivaled conversion efficiencies—a result of favorable thermodynamics and kinetics at higher operating temperatures.
The US Department of Energy (DOE) awarded $22.1 million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. This funding opportunity is administered by DOE’s Office of Nuclear Energy (NE).
A Ford-led consortium is testing hydrogen fuel cell technology on the E-Transit in a small UK-based prototype fleet developed by Ford Pro. The UK-based project will establish if hydrogen fuel cell technology can help to deliver enhanced zero-emission-driving range for E-Transit customers with energy-intensive use cases.
GTI, a research, development and training organization focused on natural gas and energy markets, is launching a hydrogen technology center. GTI focuses its R&D efforts on the generation of clean hydrogen using hydrocarbon fuels that incorporate carbon capture and/or carbon sequestration in a cost-effective manner.
Rolls-Royce and easyJet report the world’s first run of a modern aero engine on hydrogen. The ground test was conducted on an early concept demonstrator using green hydrogen created by wind and tidal power. The success of this hydrogen test is an exciting milestone. —Grazia Vittadini, Chief Technology Officer, Rolls-Royce.
The US Department of Energy (DOE) released a new report, Hybrid Energy Systems: Opportunities for Coordinated Research , highlighting innovative opportunities to spur joint research on hybrid energy systems (HES). using electrical or thermal energy to produce hydrogen from water or a methane source).
ULEMCo has been awarded a major fleet-wide contract by Aberdeen City Council (ACC) for its hydrogen dual-fuel utility vehicle conversions. The contract, initially for 35 vehicles, is a strong signal of commitment to a hydrogen-based strategy, and will see the Council operating the largest fleet of hydrogen vehicles in the UK.
All of these concepts rely on hydrogen as a primary power source—an option which Airbus believes holds exceptional promise as a clean aviation fuel and is likely to be a solution for aerospace and many other industries to meet their climate-neutral targets. —Guillaume Faury, Airbus CEO. —Guillaume Faury.
The implementation of this project, the first industrial-scale power-to-X-to-power demonstrator with an advanced hydrogen turbine, will be launched at Smurfit Kappa PRF’s site—a company specialized in manufacturing recycled paper—in Saillat-sur-Vienne, France. In this case, the “X” will be hydrogen.
The California Energy Commission has awarded GTI and Sierra Northern Railway nearly $4,000,000 to fund the design, integration, and demonstration of a hydrogen fuel cell switching locomotive to support the Hydrogen Fuel Cell Demonstrations in Rail and Marine Applications at Ports (H2RAM) initiative.
In Germany, BSE Engineering and the Institute for Renewable Energy Systems at Stralsund University of Applied Sciences (IRES) have demonstrated the conversion of wind power into renewable methanol. The team uses green electricity to split water into hydrogen and oxygen in an electrolysis step.
Cranfield Aerospace Solutions (CAeS)—the UK SME leading the Project Fresson consortium—will exploit recent advances in hydrogen fuel cell technology to develop a commercially viable, retrofit powertrain solution for the nine-passenger Britten-Norman Islander aircraft.
The US Department of Energy (DOE) released draft guidance for a Clean Hydrogen Production Standard (CHPS), developed to meet the requirements of the Bipartisan Infrastructure Law (BIL), Section 40315. A lifecycle system boundary enables consistent and comprehensive evaluation of diverse hydrogen production systems.
The discovery of this technique, which uses a metal catalyst and releases—rather than requires—energy, was reported in Nature Chemistry and has received a provisional patent from the Wisconsin Alumni Research Foundation. —Trenerry et al. —John Berry, corresponding author. —Christian Wallen, co-author.
Idemitsu Kosan, one of Japan’s leading producers and suppliers of energy, has launched a feasibility study of clean hydrogen production in Japan generated from waste, including municipal waste. The goal is to launch a first hydrogen production facility around 2030 capable of processing 200-300 tons of waste per day.
Engineers from UNSW Sydney (Australia) have successfully converted a diesel engine to run as a dual-fuel hydrogen-diesel engine, reducing CO 2 emissions by more than 85% compared to conventional diesel. In a paper published in the International Journal of HydrogenEnergy, Prof. CO 2 reduction and 13.3% —Liu et al.
CMAL) to partner in designing a hydrogen fuel-cell sea-going passenger and car ferry—a first for Europe. along with associated hydrogen storage and bunkering arrangements. along with associated hydrogen storage and bunkering arrangements. Hydrogen storage and piping. Energy management and control system.
Mitsubishi Power Americas and Texas Brine Company are collaborating to develop large-scale long-duration hydrogen storage solutions to support decarbonization efforts across the eastern United States. Long-duration hydrogen storage is a key enabling technology for the transition to a net zero carbon energy future.
Researchers from the Naval Air Warfare Center Weapons Division (NAWCWD) have developed an efficient three-step process for the conversion of cellulosic feedstocks to both a valuable chemical precursor and high-performance jet fuel blendstock. The hydrogenation proceeded with 96% chemoselectivity. Woodroffe & Harvey (2020).
bp is developing plans for the UK’s largest blue hydrogen production facility, targeting 1GW of hydrogen production by 2030. bp’s hydrogen business and make a major contribution to the UK Government’s target of developing 5GW of hydrogen production by 2030. which is then captured and permanently stored.
The consortium behind the WESTKÜSTE100 project received the go-ahead and funding approval from the Federal Ministry of Economic Affairs and Energy that will make it Germany’s first hydrogen project included in the “real-world laboratories fostering the energy transition” program.
Transform Materials has developed a novel and sustainable microwave plasma reactor process to convert natural gas into high-value hydrogen and acetylene, thereby opening up a new pathway for green chemical manufacturing.
Researchers at Stanford University have shown that porous polymer encapsulation of metal-supported catalysts can drive the selectivity of CO 2 conversion to hydrocarbons. CO 2 (black and red) and hydrogen molecules (blue) react with the help of a ruthenium-based catalyst. That would be a big deal. —Matteo Cargnello.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. The microstructured optical fiber canes (MOFCs) with photocatalyst generate hydrogen that could power a wide range of sustainable applications. 9b01577.
ReactWell , LLC, has licensed a novel waste-to-fuel technology from the Department of Energy’s Oak Ridge National Laboratory to improve energyconversion methods for cleaner, more efficient oil and gas, chemical and bioenergy production. Credit: Adam Rondinone/Oak Ridge National Laboratory, US Dept.
Proton ceramic electrochemical reactors can extract pure hydrogen from gas mixtures by electrolytically pumping protons across the membrane at 800 °C. Counterflowing streams balanced heat flows and maintained stable operating conditions that enabled 99% efficiency of hydrogen recovery. Figure courtesy of CoorsTek Membrane Sciences.
The US Department of Energy (DOE) is awarding $52.5 million to fund 31 projects to advance next-generation clean hydrogen technologies and support DOE’s recently announced HydrogenEnergy Earthshot initiative ( earlier post ) to reduce the cost and accelerate breakthroughs in the clean hydrogen sector.
and Princeton University’s Andlinger Center for Energy and the Environment have created a scalable photocatalyst that can convert ammonia into hydrogen fuel. This result demonstrates the potential for highly efficient, electrically driven production of hydrogen from an ammonia carrier with earth-abundant transition metals.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content