This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Universal Hydrogen ( earlier post ) has signed LOIs with Icelandair Group (Iceland), Air Nostrum (Spain), and Ravn Air (Alaska) for aftermarket conversion of aircraft to hydrogen propulsion and for the supply of green hydrogen fuel using Universal Hydrogen’s modular capsules. Icelandair. Icelandair.
CMAL) to partner in designing a hydrogen fuel-cell sea-going passenger and car ferry—a first for Europe. along with associated hydrogen storage and bunkering arrangements. along with associated hydrogen storage and bunkering arrangements. Hydrogen storage and piping. Source: HYSEAS III. Switchboards.
Universal Hydrogen has flown a 40-passenger regional airliner using hydrogen fuel cell propulsion. In this first test flight, one of the airplane’s turbine engines was replaced with Universal Hydrogen’s fuel cell-electric, megawatt-class powertrain. The other remained a conventional engine for safety of flight.
Rolls-Royce is further developing its mtu gas engine portfolio for power generation and cogeneration to run on hydrogen as a fuel and thus enable a climate-neutral energy supply. Already today, gensets powered by mtu Series 500 and Series 4000 gas engines can be operated with a gas blending of 10% hydrogen.
Researchers at Ariel University in Israel have developed a new type of hydrogen generator for “on-demand” use with fuel cells. Hydrogen is produced in a catalytic hydrolysis reaction of sodium borohydride (NaBH 4 ) with ruthenium powder as a catalyst. —Zakhvatkin et al. 1c00367.
Researchers at MIT have developed a method that could significantly boost the performance of carbon capture and conversion systems that use catalytic surfaces to enhance the rates of carbon-sequestering electrochemical reactions. The movement through water is sluggish, which slows the rate of conversion of the carbon dioxide.
million to 10 industry-led projects to advance nuclear technologies, including two aimed at expanding clean hydrogen production with nuclear energy. A well-established downstream syngas-to-synfuel conversion process, such as Fischer-Tropsch synthesis, converts the syngas to liquid synfuel for a total projected cost of less than $4/gallon.
All of these concepts rely on hydrogen as a primary power source—an option which Airbus believes holds exceptional promise as a clean aviation fuel and is likely to be a solution for aerospace and many other industries to meet their climate-neutral targets. —Guillaume Faury, Airbus CEO. —Guillaume Faury.
Scottish Enterprise, Transport Scotland and the Hydrogen Accelerator, based at the University of St Andrews, have appointed Arcola Energy and a consortium of industry leaders in hydrogen fuel cell integration, rail engineering and functional safety to deliver Scotland’s first hydrogen powered train.
Rolls-Royce has conducted successful tests of a 12-cylinder gas variant of the mtu Series 4000 L64 engine running on 100% hydrogen fuel. For several months, the mtu gas engine has been undergoing bench testing and continuous improvement in terms of efficiency, performance, emissions and combustion using 100% hydrogen as fuel.
A multi-institutional research team led by materials scientists from Pacific Northwest National Laboratory (PNNL) has designed a highly active and durable catalyst that doesn’t rely on costly platinum group metals (PGM) to spur the necessary chemical reaction. The new catalyst contains cobalt interspersed with nitrogen and carbon.
Cranfield Aerospace Solutions (CAeS)—the UK SME leading the Project Fresson consortium—will exploit recent advances in hydrogen fuel cell technology to develop a commercially viable, retrofit powertrain solution for the nine-passenger Britten-Norman Islander aircraft.
A Ford-led consortium is testing hydrogen fuel cell technology on the E-Transit in a small UK-based prototype fleet developed by Ford Pro. The UK-based project will establish if hydrogen fuel cell technology can help to deliver enhanced zero-emission-driving range for E-Transit customers with energy-intensive use cases.
Rolls-Royce and easyJet report the world’s first run of a modern aero engine on hydrogen. The ground test was conducted on an early concept demonstrator using green hydrogen created by wind and tidal power. The success of this hydrogen test is an exciting milestone. —Grazia Vittadini, Chief Technology Officer, Rolls-Royce.
Universal Hydrogen closed a $62-million new funding round; the oversubscribed round was completed less than six months after the company’s Series A ( earlier post ), bringing total raised to $85 million. Full-scale prototype of Universal Hydrogen's gaseous hydrogen module, with one capsule removed.
An international research group has improved graphene’s ability to catalyze the hydrogen evolution reaction, which releases hydrogen as a result of passing an electronic current through water. The graphene-based electrocatalyst was then used to enhance the release of hydrogen during electrolysis. Wakisaka, Y. Takahashi, K.
MW total) are planned for delivery in 2023 and will support the expansion of CPKC’s Hydrogen Locomotive Program. These locomotives have been undergoing field testing in 2022 and early 2023 with successful tests, proving the capabilities of Ballard’s hydrogen fuel cell technology in locomotive applications.
In Hamburg, a new development platform is being launched to test hydrogen technology in aviation from as early as 2022. Liquid hydrogen (LH 2 ) is increasingly being more concretely envisaged in the development departments of large aircraft manufacturers as a sustainably producible fuel for future generations of commercial aircraft.
The decisive factor for the switch to battery-electric vehicles is the energy cost advantage compared to hydrogen and diesel. Electricity and hydrogen are the two key energy carriers for a low-carbon future, and hydrogen will play a vital role in industry, shipping and synthetic aviation fuels. Plötz (2022).
The US Department of Energy (DOE) released draft guidance for a Clean Hydrogen Production Standard (CHPS), developed to meet the requirements of the Bipartisan Infrastructure Law (BIL), Section 40315. A lifecycle system boundary enables consistent and comprehensive evaluation of diverse hydrogen production systems.
Mitsubishi Power Americas and Texas Brine Company are collaborating to develop large-scale long-duration hydrogen storage solutions to support decarbonization efforts across the eastern United States. Long-duration hydrogen storage is a key enabling technology for the transition to a net zero carbon energy future.
Universal Hydrogen was granted a special airworthiness certificate in the experimental category by the Federal Aviation Administration (FAA) to proceed with the first flight of its hydrogen-powered regional aircraft. The Dash 8-300 flying testbed has a megawatt-class hydrogen fuel cell powertrain installed in one of its nacelles.
million to fund 31 projects to advance next-generation clean hydrogen technologies and support DOE’s recently announced Hydrogen Energy Earthshot initiative ( earlier post ) to reduce the cost and accelerate breakthroughs in the clean hydrogen sector. Domestic hydrogen supply chain components and refueling technologies.
Researchers at the University of Southampton have transformed optical fibers into photocatalytic microreactors that convert water into hydrogen fuel using solar energy. The microstructured optical fiber canes (MOFCs) with photocatalyst generate hydrogen that could power a wide range of sustainable applications. Stewart, Alice E.
Proton ceramic electrochemical reactors can extract pure hydrogen from gas mixtures by electrolytically pumping protons across the membrane at 800 °C. The new nickel-based glass-ceramic composite interconnect allowed for the design of a more complex reactor pathway. The end product is compressed hydrogen with a high degree of purity.
Alstom and Eversholt Rail have unveiled the design of a new hydrogen train for the UK market. The train, codenamed Breeze, will be a conversion of existing Class 321 trains, reengineering some of the UK’s most reliable rolling stock. The Alstom facility in Widnes will manage the conversion of the Breeze trains.
Several organizations, encompassing companies, research labs, and academia, have formed the Hydrogen Opposed Piston Engine Working Group. The Working Group consists of members undertaking research and development in the field of hydrogen combustion in an opposed-piston engine. If hydrogen combustion is sufficiently lean—i.e.,
Johnson Matthey has launched HyCOgen, a technologyt designed to play a pivotal role in enabling the conversion of captured carbon dioxide (CO 2 ) and green hydrogen into sustainable aviation fuel (SAF).
At the Movin’On 2018 mobility summit in Montreal, hydrogen fuel-cell company Symbio intoduced a 40-kW fuel cell system—H2Motiv L—targeting range-extending conversion applications for heavy-duty electric vehicles. Symbio has a great deal of experience with using hydrogen fuel cells as range extenders. Earlier post.)
Researchers at Pacific Northwest National Laboratory (PNNL), with colleagues from Oregon State University, have developed PNNL a durable, inexpensive molybdenum-phosphide catalyst that efficiently converts wastewater and seawater into hydrogen. If you can produce hydrogen from seawater, the resource pool is pretty much unlimited.
Carbon dioxide capture company AirCapture and carbon dioxide conversion company OCOchem, along with other partners, have won a $2.93-million The proposed CO 2 capture and conversion plant will be instrumental in helping the company meet these goals.
The Green Hydrogen Coalition, in conjunction with the Los Angeles Department of Water and Power (LADWP) and other key partners, launched HyDeal LA , an initiative to achieve at-scale green hydrogen procurement at $1.50/kilogram Green hydrogen is the key to reliably achieving 100% renewable energy. kg before 2030.
UK-based ULEMCo—a spin-out from Revolve Technologies focused on conversions of diesel vehicles to hydrogen dual fuel operation—has collaborated with Aberdeen City Council (ACC) to deliver the first hydrogen dual fuel road sweeper. This is designed to ensure that use of dual fuel is maximized throughout the day.
Southern California Gas Company (SoCalGas) announced it will be working together with Sierra Northern Railway, Gas Technology Institute (GTI), and other technical experts to develop and test a zero-emission hydrogen fuel cell engine for a switcher locomotive. Earlier post.). SoCalGas is committing another $500,000 to advance the research.
Researchers from the Technical University of Denmark and Haldor Topsoe, with colleagues from the Danish Technological Institute and Sintex have developed a “ disruptive approach to a fundamental process ” by integrating an electrically heated catalytic structure directly into a steam-methane–reforming (SMR) reactor for hydrogen production.
million to projects to develop hydrogen refueling infrastructure in California ( PON-13-607 ). All projects funded under this solicitation must support the future deployment of FCVs and hydrogen internal combustion engine vehicles (HICEVs). 100% Renewable Hydrogen Refueling Station Competition. Mobile Refueler Competition.
The US Department of Energy (DOE) announced $33 million in funding to support innovative hydrogen and fuel cell research & development (R&D), infrastructure supply chain development and validation, and cost analysis activities. ( Efficient and innovative hydrogen production. This would be coordinated with the H2NEW consortium.
Energy company SGH2 is bringing the world’s biggest green hydrogen production facility to Lancaster, California. SGH2’s gasification process uses a plasma-enhanced thermal catalytic conversion process optimized with oxygen-enriched gas.
The California Energy Commission has awarded GTI and Sierra Northern Railway nearly $4,000,000 to fund the design, integration, and demonstration of a hydrogen fuel cell switching locomotive to support the Hydrogen Fuel Cell Demonstrations in Rail and Marine Applications at Ports (H2RAM) initiative.
Projects selected under this funding opportunity announcement (FOA) will perform conceptual design studies followed by field validations of cost-effective processes for ocean-based carbon capture and for direct air capture of CO 2 coupled with carbon-free hydrogen and captured CO 2 to create carbon-neutral methanol.
The technologies work as a system that converts organic waste into renewable hydrogen gas for use as a biofuel. The system combines biology and electrochemistry to degrade organic waste—such as plant biomass or food waste—to produce hydrogen. —Alex Lewis, CEO.
Researchers at the US Naval Research Laboratory (NRL), Materials Science and Technology Division have demonstrated novel NRL technologies developed for the recovery of CO 2 and hydrogen from seawater and their subsequent conversion to liquid fuels. Bio-hydrocarbons Carbon Capture and Conversion (CCC) Fuels Hydrogen Production'
The Dutch Institute for Fundamental Energy Research ( DIFFER ) is partnering with Toyota Motor Europe (TME) to develop a device that absorbs water vapor, and splits it into hydrogen and oxygen directly using solar energy. In this project, DIFFER and TME are exploring an innovative way to produce hydrogen directly out of humid air.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content