Remove Conversion Remove Cost Remove Low Cost
article thumbnail

PNNL team develops new low-cost method to convert captured CO2 to methane

Green Car Congress

By using a water-lean post-combustion capture solvent, (N-(2-ethoxyethyl)-3-morpholinopropan-1-amine) (2-EEMPA), they achieved a greater than 90% conversion of captured CO 2 to hydrocarbons—mostly methane—in the presence of a heterogenous Ru catalyst under relatively mild reaction conditions (170 °C and 2 pressure). Heldebrant, D.,

Convert 315
article thumbnail

New Na-ion battery combining intercalation and conversion could be promising low-cost energy storage system

Green Car Congress

Scheme of the new full sodium-ion battery, which combines an intercalation cathode and a conversion anode. This battery system combines an intercalation cathode and a conversion anode, resulting in high capacity, high rate capability, thermal stability, and much improved cycle life. (In Credit: ACS, Oh et al. Click to enlarge.

article thumbnail

Exeter team develops low-cost photoelectrode for spontaneous water-splitting using sunlight

Green Car Congress

The greatest challenge is to develop a suitable technology for large scale and cost effective solar fuel production to compete with fossil fuel. Cost effective solar fuel generation is hindered by the semiconductor material not meeting certain essential criteria to achieve highly efficient solar to hydrogen conversion. .

Water 342
article thumbnail

Harvard team demonstrates new metal-free organic–inorganic aqueous flow battery; potential breakthrough for low-cost grid-scale storage

Green Car Congress

In a paper in Nature , they suggest that the use of such redox-active organic molecules instead of redox-active metals represents a new and promising direction for realizing massive electrical energy storage at greatly reduced cost. The design permits larger amounts of energy to be stored at lower cost than with traditional batteries.

Low Cost 374
article thumbnail

EPFL team develops low-cost water splitting cell with solar-to-hydrogen efficiency of 12.3%

Green Car Congress

A team led by Dr. Michael Grätzel at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland has developed a highly efficient and low-cost water-splitting cell combining an advanced perovskite tandem solar cell and a bi-functional Earth-abundant catalyst. Jingshan Luo, post-doctoral researcher, explains how. Credit: EPFL.

Low Cost 278
article thumbnail

GWU team demonstrates highly scalable, low-cost process for making carbon nanotube wools directly from CO2

Green Car Congress

Stuart Licht have demonstrated the first facile high-yield, low-energy synthesis of macroscopic length carbon nanotubes (CNTs)—carbon nanotube wool—from CO 2 using molten carbonate electrolysis ( earlier post ). This synthesis consumes only CO 2 and electricity, and is constrained only by the cost of electricity.

Low Cost 300
article thumbnail

Waste Management and Renmatix to explore conversion of urban waste to low-cost cellulosic sugar via supercritical hydrolysis

Green Car Congress

The strategic investment and alliance aims to expand the feedstock flexibility of Renmatix’s proprietary Plantrose process beyond rural biomass to include materials derived from cost-effective and readily available urban waste material such as that managed by Waste Management.

Waste 274