Remove Connect Remove Resource Remove Sodium Remove Universal
article thumbnail

Chalmers team develops graphite-like anode for Na-ion batteries; Janus graphene

Green Car Congress

Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The estimated sodium storage up to C 6.9 100 to 150 mA h g ? 100 to 150 mA h g ?1

Sodium 493
article thumbnail

New high-power, high-capacity, long-life sodium battery

Green Car Congress

A team from the Max Planck Institute for Solid State Research in Stuttgart and the University of Science and Technology of China, Hefei, has developed a high-power, high-capacity sodium battery with 96% capacity retention after 2,000 cycles. 2016), “High Power–High Energy Sodium Battery Based on Threefold Interpenetrating Network.”

Sodium 150
article thumbnail

PNNL team develops sodium-manganese oxide electrodes for sodium-ion rechargeable batteries

Green Car Congress

To connect intermittent renewable energy sources (i.e., Sodium is seen by some as a promising alternative, but the sodium-sulfur batteries currently in use run at temperatures above 300 °C, making them less energy efficient and safe than batteries that run at ambient temperatures. Earlier post.) for some time. performance.

Sodium 218
article thumbnail

Univ. of Maryland team develops promising sodium-ion cathode material: FePO4/nanotube composite

Green Car Congress

Researchers at the University of Maryland have developed a nanocomposite material of amorphous, porous FePO 4 nanoparticles electrically wired by single-wall carbon nanotubes as a potential cathode material for sodium-ion batteries (SIBs). SWNT composite is a promising cathode material for viable sodium-ion batteries.

Sodium 231
article thumbnail

Xcel Terms First Phase of Sodium-Sulfur Battery Wind Energy Storage Test Project Successful

Green Car Congress

In October 2008, Xcel began testing a one-megawatt sodium-sulfur (NaS) battery ( earlier post ) to demonstrate its ability to store wind energy and move it to the electricity grid when needed. Reduce the need to compensate for the variability and limited predictability of wind generation resources. They are able to store about 7.2

article thumbnail

WMG researchers use graphene girders to improve performance of Si anodes in Li-ion batteries

Green Car Congress

Researchers at WMG (Warwick Manufacturing Group), The University of Warwick (UK) have developed Silicon-Few Layer Graphene (Si-FLG) composite electrodes as an effective approach to replacing graphite in the anodes of lithium-ion batteries. Source: WMG. Click to enlarge. A cross section of the silicon and FLG together in an anode.

Li-ion 191
article thumbnail

Researchers Show Carbon Nanostructures Can Function as Catalysts for Solid-State Hydrogen Storage

Green Car Congress

Researchers from the US and Sweden have shown that carbon nanostructures (fullerenes, nanotubes, and graphene) can be used as catalysts for hydrogen uptake and release in complex metal hydrides such as sodium alanate (NaAlH 4 ) and also developed what they characterize as an “ unambiguous understanding ” of how such catalysts work.

Carbon 150